Create data_storytelling.py
Browse files- data_storytelling.py +107 -0
data_storytelling.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import seaborn as sns
|
4 |
+
from wordcloud import WordCloud
|
5 |
+
|
6 |
+
class DataStoryteller:
|
7 |
+
def __init__(self):
|
8 |
+
pass
|
9 |
+
|
10 |
+
def generate_story(self, data):
|
11 |
+
story = "Data Story:\n\n"
|
12 |
+
|
13 |
+
# Basic statistics
|
14 |
+
story += self._generate_basic_stats(data)
|
15 |
+
|
16 |
+
# Correlation analysis
|
17 |
+
story += self._generate_correlation_analysis(data)
|
18 |
+
|
19 |
+
# Trend analysis
|
20 |
+
story += self._generate_trend_analysis(data)
|
21 |
+
|
22 |
+
# Distribution analysis
|
23 |
+
story += self._generate_distribution_analysis(data)
|
24 |
+
|
25 |
+
return story
|
26 |
+
|
27 |
+
def _generate_basic_stats(self, data):
|
28 |
+
stats = data.describe()
|
29 |
+
text = "Basic Statistics:\n"
|
30 |
+
for column in stats.columns:
|
31 |
+
text += f"\n{column}:\n"
|
32 |
+
text += f" Mean: {stats[column]['mean']:.2f}\n"
|
33 |
+
text += f" Median: {data[column].median():.2f}\n"
|
34 |
+
text += f" Min: {stats[column]['min']:.2f}\n"
|
35 |
+
text += f" Max: {stats[column]['max']:.2f}\n"
|
36 |
+
return text
|
37 |
+
|
38 |
+
def _generate_correlation_analysis(self, data):
|
39 |
+
numeric_data = data.select_dtypes(include=[np.number])
|
40 |
+
corr_matrix = numeric_data.corr()
|
41 |
+
|
42 |
+
text = "\nCorrelation Analysis:\n"
|
43 |
+
for i in range(len(corr_matrix.columns)):
|
44 |
+
for j in range(i+1, len(corr_matrix.columns)):
|
45 |
+
col1, col2 = corr_matrix.columns[i], corr_matrix.columns[j]
|
46 |
+
corr = corr_matrix.loc[col1, col2]
|
47 |
+
if abs(corr) > 0.5:
|
48 |
+
text += f" Strong correlation between {col1} and {col2}: {corr:.2f}\n"
|
49 |
+
return text
|
50 |
+
|
51 |
+
def _generate_trend_analysis(self, data):
|
52 |
+
text = "\nTrend Analysis:\n"
|
53 |
+
for column in data.select_dtypes(include=[np.number]).columns:
|
54 |
+
trend = np.polyfit(range(len(data)), data[column], 1)[0]
|
55 |
+
if trend > 0:
|
56 |
+
text += f" {column} shows an increasing trend.\n"
|
57 |
+
elif trend < 0:
|
58 |
+
text += f" {column} shows a decreasing trend.\n"
|
59 |
+
else:
|
60 |
+
text += f" {column} shows no significant trend.\n"
|
61 |
+
return text
|
62 |
+
|
63 |
+
def _generate_distribution_analysis(self, data):
|
64 |
+
text = "\nDistribution Analysis:\n"
|
65 |
+
for column in data.select_dtypes(include=[np.number]).columns:
|
66 |
+
skewness = data[column].skew()
|
67 |
+
if abs(skewness) < 0.5:
|
68 |
+
text += f" {column} is approximately symmetrically distributed.\n"
|
69 |
+
elif skewness > 0:
|
70 |
+
text += f" {column} is right-skewed.\n"
|
71 |
+
else:
|
72 |
+
text += f" {column} is left-skewed.\n"
|
73 |
+
return text
|
74 |
+
|
75 |
+
def generate_word_cloud(self, data, text_column):
|
76 |
+
text = " ".join(data[text_column].astype(str))
|
77 |
+
wordcloud = WordCloud(width=800, height=400, background_color='white').generate(text)
|
78 |
+
|
79 |
+
plt.figure(figsize=(10, 5))
|
80 |
+
plt.imshow(wordcloud, interpolation='bilinear')
|
81 |
+
plt.axis('off')
|
82 |
+
plt.title('Word Cloud')
|
83 |
+
|
84 |
+
return plt
|
85 |
+
|
86 |
+
def generate_summary_dashboard(self, data):
|
87 |
+
fig, axs = plt.subplots(2, 2, figsize=(20, 15))
|
88 |
+
|
89 |
+
# Histogram
|
90 |
+
sns.histplot(data=data, x=data.select_dtypes(include=[np.number]).columns[0], ax=axs[0, 0])
|
91 |
+
axs[0, 0].set_title('Distribution of ' + data.select_dtypes(include=[np.number]).columns[0])
|
92 |
+
|
93 |
+
# Scatter plot
|
94 |
+
sns.scatterplot(data=data, x=data.select_dtypes(include=[np.number]).columns[0],
|
95 |
+
y=data.select_dtypes(include=[np.number]).columns[1], ax=axs[0, 1])
|
96 |
+
axs[0, 1].set_title('Scatter Plot')
|
97 |
+
|
98 |
+
# Box plot
|
99 |
+
sns.boxplot(data=data, y=data.select_dtypes(include=[np.number]).columns[0], ax=axs[1, 0])
|
100 |
+
axs[1, 0].set_title('Box Plot')
|
101 |
+
|
102 |
+
# Correlation heatmap
|
103 |
+
sns.heatmap(data.select_dtypes(include=[np.number]).corr(), annot=True, cmap='coolwarm', ax=axs[1, 1])
|
104 |
+
axs[1, 1].set_title('Correlation Heatmap')
|
105 |
+
|
106 |
+
plt.tight_layout()
|
107 |
+
return fig
|