Update app.py
Browse files
app.py
CHANGED
@@ -128,117 +128,3 @@ if __name__ == "__main__":
|
|
128 |
app = DataAutomationApp()
|
129 |
app.run()
|
130 |
|
131 |
-
'''
|
132 |
-
import streamlit as st
|
133 |
-
from data_cleaning import DataCleaner
|
134 |
-
from visualization import VisualizationSelector
|
135 |
-
from data_analysis import DataAnalyzer
|
136 |
-
from report_generator import ReportGenerator
|
137 |
-
from api_integration import APIConnector
|
138 |
-
from natural_language_query import NLQueryEngine
|
139 |
-
from predictive_analytics import PredictiveAnalytics
|
140 |
-
from anomaly_detection import AnomalyDetector
|
141 |
-
from time_series_forecasting import TimeSeriesForecaster
|
142 |
-
from sentiment_analysis import SentimentAnalyzer
|
143 |
-
from data_storytelling import DataStoryteller
|
144 |
-
import pandas as pd
|
145 |
-
|
146 |
-
class DataAutomationApp:
|
147 |
-
def __init__(self):
|
148 |
-
self.data = None
|
149 |
-
self.cleaner = DataCleaner()
|
150 |
-
self.visualizer = VisualizationSelector()
|
151 |
-
self.analyzer = DataAnalyzer()
|
152 |
-
self.report_generator = ReportGenerator()
|
153 |
-
self.api_connector = APIConnector()
|
154 |
-
self.nl_query_engine = NLQueryEngine()
|
155 |
-
self.predictive_analytics = PredictiveAnalytics()
|
156 |
-
self.anomaly_detector = AnomalyDetector()
|
157 |
-
self.time_series_forecaster = TimeSeriesForecaster()
|
158 |
-
self.sentiment_analyzer = SentimentAnalyzer()
|
159 |
-
self.data_storyteller = DataStoryteller()
|
160 |
-
|
161 |
-
def load_data(self, file):
|
162 |
-
if file.name.endswith('.csv'):
|
163 |
-
self.data = pd.read_csv(file)
|
164 |
-
elif file.name.endswith(('.xls', '.xlsx')):
|
165 |
-
self.data = pd.read_excel(file)
|
166 |
-
else:
|
167 |
-
st.error("Unsupported file format. Please upload a CSV or Excel file.")
|
168 |
-
|
169 |
-
def run(self):
|
170 |
-
st.title("Data Automation and Visualization App")
|
171 |
-
|
172 |
-
# File upload
|
173 |
-
uploaded_file = st.file_uploader("Choose a CSV or Excel file", type=["csv", "xlsx"])
|
174 |
-
if uploaded_file is not None:
|
175 |
-
self.load_data(uploaded_file)
|
176 |
-
if self.data is not None:
|
177 |
-
st.success("Data loaded successfully!")
|
178 |
-
|
179 |
-
# Data cleaning
|
180 |
-
if st.button("Clean Data"):
|
181 |
-
self.data = self.cleaner.clean(self.data)
|
182 |
-
st.write(self.data.head())
|
183 |
-
|
184 |
-
# Visualization
|
185 |
-
if st.button("Generate Visualizations"):
|
186 |
-
visualizations = self.visualizer.select_visualizations(self.data)
|
187 |
-
for viz in visualizations:
|
188 |
-
st.pyplot(viz)
|
189 |
-
|
190 |
-
# Data Analysis
|
191 |
-
if st.button("Analyze Data"):
|
192 |
-
insights = self.analyzer.analyze(self.data)
|
193 |
-
st.write(insights)
|
194 |
-
|
195 |
-
# Natural Language Query
|
196 |
-
query = st.text_input("Ask a question about your data:")
|
197 |
-
if query:
|
198 |
-
result = self.nl_query_engine.process_query(query, self.data)
|
199 |
-
st.write(result)
|
200 |
-
|
201 |
-
# Predictive Analytics
|
202 |
-
if st.button("Run Predictive Analytics"):
|
203 |
-
prediction = self.predictive_analytics.predict(self.data)
|
204 |
-
st.write(prediction)
|
205 |
-
|
206 |
-
# Anomaly Detection
|
207 |
-
if st.button("Detect Anomalies"):
|
208 |
-
anomalies = self.anomaly_detector.detect(self.data)
|
209 |
-
st.write(anomalies)
|
210 |
-
|
211 |
-
# Time Series Forecasting
|
212 |
-
if st.button("Forecast Time Series"):
|
213 |
-
forecast = self.time_series_forecaster.forecast(self.data)
|
214 |
-
st.write(forecast)
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
# Sentiment Analysis
|
219 |
-
if st.button("Analyze Sentiment"):
|
220 |
-
sentiment = self.sentiment_analyzer.analyze(self.data)
|
221 |
-
st.write(sentiment)
|
222 |
-
|
223 |
-
# Data Storytelling
|
224 |
-
if st.button("Generate Data Story"):
|
225 |
-
story = self.data_storyteller.generate_story(self.data)
|
226 |
-
st.write(story)
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
# Report Generation
|
231 |
-
if st.button("Generate Report"):
|
232 |
-
report = self.report_generator.generate(self.data)
|
233 |
-
st.download_button(
|
234 |
-
label="Download Report",
|
235 |
-
data=report,
|
236 |
-
file_name="data_report.txt",
|
237 |
-
mime="text/plain"
|
238 |
-
)
|
239 |
-
|
240 |
-
if __name__ == "__main__":
|
241 |
-
app = DataAutomationApp()
|
242 |
-
app.run()
|
243 |
-
|
244 |
-
'''
|
|
|
128 |
app = DataAutomationApp()
|
129 |
app.run()
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|