Rename text_analyzer.py to data_analysis.py
Browse files- data_analysis.py +41 -0
- text_analyzer.py +0 -71
data_analysis.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
from scipy import stats
|
4 |
+
|
5 |
+
class DataAnalyzer:
|
6 |
+
def analyze(self, data):
|
7 |
+
insights = {}
|
8 |
+
|
9 |
+
# Basic statistics
|
10 |
+
insights['basic_stats'] = data.describe().to_dict()
|
11 |
+
|
12 |
+
# Correlation analysis
|
13 |
+
numeric_columns = data.select_dtypes(include=[np.number]).columns
|
14 |
+
if len(numeric_columns) > 1:
|
15 |
+
correlation_matrix = data[numeric_columns].corr()
|
16 |
+
insights['correlations'] = correlation_matrix.to_dict()
|
17 |
+
|
18 |
+
# Skewness and kurtosis
|
19 |
+
skewness = data[numeric_columns].skew()
|
20 |
+
kurtosis = data[numeric_columns].kurtosis()
|
21 |
+
insights['distribution'] = {
|
22 |
+
'skewness': skewness.to_dict(),
|
23 |
+
'kurtosis': kurtosis.to_dict()
|
24 |
+
}
|
25 |
+
|
26 |
+
# Categorical data analysis
|
27 |
+
categorical_columns = data.select_dtypes(include=['object']).columns
|
28 |
+
for column in categorical_columns:
|
29 |
+
insights[f'{column}_distribution'] = data[column].value_counts().to_dict()
|
30 |
+
|
31 |
+
# Check for normality
|
32 |
+
normality_tests = {}
|
33 |
+
for column in numeric_columns:
|
34 |
+
_, p_value = stats.normaltest(data[column].dropna())
|
35 |
+
normality_tests[column] = {
|
36 |
+
'is_normal': p_value > 0.05,
|
37 |
+
'p_value': p_value
|
38 |
+
}
|
39 |
+
insights['normality_tests'] = normality_tests
|
40 |
+
|
41 |
+
return insights
|
text_analyzer.py
DELETED
@@ -1,71 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import nltk
|
4 |
-
from nltk.corpus import stopwords
|
5 |
-
from nltk.tokenize import word_tokenize
|
6 |
-
from nltk.sentiment import SentimentIntensityAnalyzer
|
7 |
-
from collections import Counter
|
8 |
-
from wordcloud import WordCloud
|
9 |
-
import matplotlib.pyplot as plt
|
10 |
-
|
11 |
-
nltk.download('punkt')
|
12 |
-
nltk.download('stopwords')
|
13 |
-
nltk.download('vader_lexicon')
|
14 |
-
|
15 |
-
class TextAnalyzer:
|
16 |
-
def analyze_text(self, df):
|
17 |
-
text_columns = df.select_dtypes(include=['object']).columns
|
18 |
-
|
19 |
-
if len(text_columns) > 0:
|
20 |
-
text_column = st.selectbox("Select text column for analysis", text_columns)
|
21 |
-
analysis_type = st.selectbox("Select analysis type", ["Word Frequency", "Sentiment Analysis", "Word Cloud"])
|
22 |
-
|
23 |
-
if analysis_type == "Word Frequency":
|
24 |
-
self.perform_word_frequency(df[text_column])
|
25 |
-
elif analysis_type == "Sentiment Analysis":
|
26 |
-
self.perform_sentiment_analysis(df[text_column])
|
27 |
-
elif analysis_type == "Word Cloud":
|
28 |
-
self.generate_word_cloud(df[text_column])
|
29 |
-
else:
|
30 |
-
st.write("No text columns found in the dataset.")
|
31 |
-
|
32 |
-
def perform_word_frequency(self, text_series):
|
33 |
-
stop_words = set(stopwords.words('english'))
|
34 |
-
word_freq = Counter()
|
35 |
-
|
36 |
-
for text in text_series:
|
37 |
-
tokens = word_tokenize(text.lower())
|
38 |
-
words = [word for word in tokens if word.isalnum() and word not in stop_words]
|
39 |
-
word_freq.update(words)
|
40 |
-
|
41 |
-
st.subheader("Word Frequency Analysis")
|
42 |
-
n_words = st.slider("Select number of top words to display", min_value=5, max_value=50, value=20)
|
43 |
-
|
44 |
-
top_words = word_freq.most_common(n_words)
|
45 |
-
fig = px.bar(x=[word for word, _ in top_words], y=[freq for _, freq in top_words], title="Top Words")
|
46 |
-
st.plotly_chart(fig)
|
47 |
-
|
48 |
-
def perform_sentiment_analysis(self, text_series):
|
49 |
-
sia = SentimentIntensityAnalyzer()
|
50 |
-
sentiments = text_series.apply(lambda x: sia.polarity_scores(x))
|
51 |
-
|
52 |
-
st.subheader("Sentiment Analysis")
|
53 |
-
sentiment_df = pd.DataFrame(sentiments.tolist())
|
54 |
-
|
55 |
-
fig = px.histogram(sentiment_df, x='compound', title="Sentiment Distribution")
|
56 |
-
st.plotly_chart(fig)
|
57 |
-
|
58 |
-
st.write("Average Sentiment Scores:")
|
59 |
-
st.write(sentiment_df.mean())
|
60 |
-
|
61 |
-
def generate_word_cloud(self, text_series):
|
62 |
-
stop_words = set(stopwords.words('english'))
|
63 |
-
text = ' '.join(text_series)
|
64 |
-
|
65 |
-
wordcloud = WordCloud(width=800, height=400, background_color='white', stopwords=stop_words).generate(text)
|
66 |
-
|
67 |
-
st.subheader("Word Cloud")
|
68 |
-
fig, ax = plt.subplots()
|
69 |
-
ax.imshow(wordcloud, interpolation='bilinear')
|
70 |
-
ax.axis('off')
|
71 |
-
st.pyplot(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|