Create time_series_analyzer.py
Browse files- time_series_analyzer.py +72 -0
time_series_analyzer.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import plotly.express as px
|
4 |
+
from statsmodels.tsa.seasonal import seasonal_decompose
|
5 |
+
from statsmodels.tsa.arima.model import ARIMA
|
6 |
+
from prophet import Prophet
|
7 |
+
|
8 |
+
class TimeSeriesAnalyzer:
|
9 |
+
def analyze(self, df):
|
10 |
+
date_columns = df.select_dtypes(include=['datetime64']).columns
|
11 |
+
if len(date_columns) > 0:
|
12 |
+
date_column = st.selectbox("Select date column", date_columns)
|
13 |
+
value_column = st.selectbox("Select value column", df.columns)
|
14 |
+
|
15 |
+
df[date_column] = pd.to_datetime(df[date_column])
|
16 |
+
df = df.sort_values(date_column)
|
17 |
+
|
18 |
+
st.subheader("Time Series Plot")
|
19 |
+
fig = px.line(df, x=date_column, y=value_column)
|
20 |
+
st.plotly_chart(fig)
|
21 |
+
|
22 |
+
analysis_type = st.selectbox("Select analysis type", ["Decomposition", "ARIMA Forecasting", "Prophet Forecasting"])
|
23 |
+
|
24 |
+
if analysis_type == "Decomposition":
|
25 |
+
self.perform_decomposition(df, date_column, value_column)
|
26 |
+
elif analysis_type == "ARIMA Forecasting":
|
27 |
+
self.perform_arima_forecast(df, date_column, value_column)
|
28 |
+
elif analysis_type == "Prophet Forecasting":
|
29 |
+
self.perform_prophet_forecast(df, date_column, value_column)
|
30 |
+
else:
|
31 |
+
st.write("No datetime columns found in the dataset.")
|
32 |
+
|
33 |
+
def perform_decomposition(self, df, date_column, value_column):
|
34 |
+
df_temp = df.set_index(date_column)
|
35 |
+
result = seasonal_decompose(df_temp[value_column], model='additive', period=30)
|
36 |
+
|
37 |
+
st.subheader("Time Series Decomposition")
|
38 |
+
fig = px.line(x=result.seasonal.index, y=result.seasonal, title="Seasonal")
|
39 |
+
st.plotly_chart(fig)
|
40 |
+
fig = px.line(x=result.trend.index, y=result.trend, title="Trend")
|
41 |
+
st.plotly_chart(fig)
|
42 |
+
fig = px.line(x=result.resid.index, y=result.resid, title="Residual")
|
43 |
+
st.plotly_chart(fig)
|
44 |
+
|
45 |
+
def perform_arima_forecast(self, df, date_column, value_column):
|
46 |
+
df_temp = df.set_index(date_column)
|
47 |
+
model = ARIMA(df_temp[value_column], order=(1,1,1))
|
48 |
+
results = model.fit()
|
49 |
+
|
50 |
+
forecast_steps = st.slider("Select number of steps to forecast", min_value=1, max_value=365, value=30)
|
51 |
+
forecast = results.forecast(steps=forecast_steps)
|
52 |
+
|
53 |
+
st.subheader("ARIMA Forecast")
|
54 |
+
fig = px.line(x=df_temp.index, y=df_temp[value_column], title="Original Data with Forecast")
|
55 |
+
fig.add_scatter(x=forecast.index, y=forecast, mode='lines', name='Forecast')
|
56 |
+
st.plotly_chart(fig)
|
57 |
+
|
58 |
+
def perform_prophet_forecast(self, df, date_column, value_column):
|
59 |
+
df_prophet = df[[date_column, value_column]].rename(columns={date_column: 'ds', value_column: 'y'})
|
60 |
+
model = Prophet()
|
61 |
+
model.fit(df_prophet)
|
62 |
+
|
63 |
+
future_dates = st.slider("Select number of days to forecast", min_value=1, max_value=365, value=30)
|
64 |
+
future = model.make_future_dataframe(periods=future_dates)
|
65 |
+
forecast = model.predict(future)
|
66 |
+
|
67 |
+
st.subheader("Prophet Forecast")
|
68 |
+
fig = px.line(x=df_prophet['ds'], y=df_prophet['y'], title="Original Data with Forecast")
|
69 |
+
fig.add_scatter(x=forecast['ds'], y=forecast['yhat'], mode='lines', name='Forecast')
|
70 |
+
fig.add_scatter(x=forecast['ds'], y=forecast['yhat_lower'], mode='lines', name='Lower Bound')
|
71 |
+
fig.add_scatter(x=forecast['ds'], y=forecast['yhat_upper'], mode='lines', name='Upper Bound')
|
72 |
+
st.plotly_chart(fig)
|