DualStyleGAN / app.py
hysts's picture
hysts HF staff
Update
b99ea79
raw
history blame
9.1 kB
#!/usr/bin/env python
from __future__ import annotations
import argparse
import functools
import os
import pathlib
import sys
from typing import Callable
if os.environ.get('SYSTEM') == 'spaces':
os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/fused_act.py")
os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/upfirdn2d.py")
sys.path.insert(0, 'DualStyleGAN')
import dlib
import gradio as gr
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
import torchvision.transforms as T
from model.dualstylegan import DualStyleGAN
from model.encoder.align_all_parallel import align_face
from model.encoder.psp import pSp
from util import load_image, visualize
ORIGINAL_REPO_URL = 'https://github.com/williamyang1991/DualStyleGAN'
TITLE = 'williamyang1991/DualStyleGAN'
DESCRIPTION = f"""A demo for {ORIGINAL_REPO_URL}
You can select style images for cartoon from the table below.
The style image index should be in the following range: (cartoon: 0-316, caricature: 0-198, anime: 0-173, arcane: 0-99, comic: 0-100, pixar: 0-121, slamdunk: 0-119)
"""
ARTICLE = '![cartoon style images](https://user-images.githubusercontent.com/18130694/159848447-96fa5194-32ec-42f0-945a-3b1958bf6e5e.jpg)'
TOKEN = os.environ['TOKEN']
MODEL_REPO = 'hysts/DualStyleGAN'
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser()
parser.add_argument('--device', type=str, default='cpu')
parser.add_argument('--theme', type=str)
parser.add_argument('--live', action='store_true')
parser.add_argument('--share', action='store_true')
parser.add_argument('--port', type=int)
parser.add_argument('--disable-queue',
dest='enable_queue',
action='store_false')
parser.add_argument('--allow-flagging', type=str, default='never')
parser.add_argument('--allow-screenshot', action='store_true')
return parser.parse_args()
def load_encoder(device: torch.device) -> nn.Module:
ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO,
'models/encoder.pt',
use_auth_token=TOKEN)
ckpt = torch.load(ckpt_path, map_location='cpu')
opts = ckpt['opts']
opts['device'] = device.type
opts['checkpoint_path'] = ckpt_path
opts = argparse.Namespace(**opts)
model = pSp(opts)
model.to(device)
model.eval()
return model
def load_generator(style_type: str, device: torch.device) -> nn.Module:
model = DualStyleGAN(1024, 512, 8, 2, res_index=6)
ckpt_path = huggingface_hub.hf_hub_download(
MODEL_REPO, f'models/{style_type}/generator.pt', use_auth_token=TOKEN)
ckpt = torch.load(ckpt_path, map_location='cpu')
model.load_state_dict(ckpt['g_ema'])
model.to(device)
model.eval()
return model
def load_exstylecode(style_type: str) -> dict[str, np.ndarray]:
if style_type in ['cartoon', 'caricature', 'anime']:
filename = 'refined_exstyle_code.npy'
else:
filename = 'exstyle_code.npy'
path = huggingface_hub.hf_hub_download(MODEL_REPO,
f'models/{style_type}/{filename}',
use_auth_token=TOKEN)
exstyles = np.load(path, allow_pickle=True).item()
return exstyles
def create_transform() -> Callable:
transform = T.Compose([
T.Resize(256),
T.CenterCrop(256),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
])
return transform
def create_dlib_landmark_model():
path = huggingface_hub.hf_hub_download(
'hysts/dlib_face_landmark_model',
'shape_predictor_68_face_landmarks.dat',
use_auth_token=TOKEN)
return dlib.shape_predictor(path)
def denormalize(tensor: torch.Tensor) -> torch.Tensor:
return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8)
def postprocess(tensor: torch.Tensor) -> PIL.Image.Image:
tensor = denormalize(tensor)
image = tensor.cpu().numpy().transpose(1, 2, 0)
return PIL.Image.fromarray(image)
@torch.inference_mode()
def run(
image,
style_type: str,
style_id: float,
dlib_landmark_model,
encoder: nn.Module,
generator_dict: dict[str, nn.Module],
exstyle_dict: dict[str, dict[str, np.ndarray]],
transform: Callable,
device: torch.device,
) -> tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image,
PIL.Image, PIL.Image]:
generator = generator_dict[style_type]
exstyles = exstyle_dict[style_type]
style_id = int(style_id)
style_id = min(max(0, style_id), len(exstyles) - 1)
stylename = list(exstyles.keys())[style_id]
image = align_face(filepath=image.name, predictor=dlib_landmark_model)
input_data = transform(image).unsqueeze(0).to(device)
img_rec, instyle = encoder(input_data,
randomize_noise=False,
return_latents=True,
z_plus_latent=True,
return_z_plus_latent=True,
resize=False)
img_rec = torch.clamp(img_rec.detach(), -1, 1)
latent = torch.tensor(exstyles[stylename]).repeat(2, 1, 1).to(device)
# latent[0] for both color and structrue transfer and latent[1] for only structrue transfer
latent[1, 7:18] = instyle[0, 7:18]
exstyle = generator.generator.style(
latent.reshape(latent.shape[0] * latent.shape[1],
latent.shape[2])).reshape(latent.shape)
img_gen, _ = generator([instyle.repeat(2, 1, 1)],
exstyle,
z_plus_latent=True,
truncation=0.7,
truncation_latent=0,
use_res=True,
interp_weights=[0.6] * 7 + [1] * 11)
img_gen = torch.clamp(img_gen.detach(), -1, 1)
# deactivate color-related layers by setting w_c = 0
img_gen2, _ = generator([instyle],
exstyle[0:1],
z_plus_latent=True,
truncation=0.7,
truncation_latent=0,
use_res=True,
interp_weights=[0.6] * 7 + [0] * 11)
img_gen2 = torch.clamp(img_gen2.detach(), -1, 1)
img_rec = postprocess(img_rec[0])
img_gen0 = postprocess(img_gen[0])
img_gen1 = postprocess(img_gen[1])
img_gen2 = postprocess(img_gen2[0])
return image, img_rec, img_gen0, img_gen1, img_gen2
def main():
gr.close_all()
args = parse_args()
device = torch.device(args.device)
style_types = [
'cartoon',
'caricature',
'anime',
'arcane',
'comic',
'pixar',
'slamdunk',
]
generator_dict = {
style_type: load_generator(style_type, device)
for style_type in style_types
}
exstyle_dict = {
style_type: load_exstylecode(style_type)
for style_type in style_types
}
dlib_landmark_model = create_dlib_landmark_model()
encoder = load_encoder(device)
transform = create_transform()
func = functools.partial(run,
dlib_landmark_model=dlib_landmark_model,
encoder=encoder,
generator_dict=generator_dict,
exstyle_dict=exstyle_dict,
transform=transform,
device=device)
func = functools.update_wrapper(func, run)
image_paths = sorted(pathlib.Path('images').glob('*'))
examples = [[path.as_posix(), 'cartoon', 26] for path in image_paths]
gr.Interface(
func,
[
gr.inputs.Image(type='file', label='Input Image'),
gr.inputs.Radio(
style_types,
type='value',
default='cartoon',
label='Style Type',
),
gr.inputs.Number(default=26, label='Style Image Index'),
],
[
gr.outputs.Image(type='pil', label='Aligned Face'),
gr.outputs.Image(type='pil', label='Reconstructed'),
gr.outputs.Image(type='pil',
label='Result 1 (Color and structure transfer)'),
gr.outputs.Image(type='pil',
label='Result 2 (Structure transfer only)'),
gr.outputs.Image(
type='pil',
label='Result 3 (Color-related layers deactivated)'),
],
examples=examples,
theme=args.theme,
title=TITLE,
description=DESCRIPTION,
article=ARTICLE,
allow_screenshot=args.allow_screenshot,
allow_flagging=args.allow_flagging,
live=args.live,
).launch(
enable_queue=args.enable_queue,
server_port=args.port,
share=args.share,
)
if __name__ == '__main__':
main()