Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
from __future__ import annotations | |
import argparse | |
import functools | |
import os | |
import pathlib | |
import sys | |
from typing import Callable | |
if os.environ.get('SYSTEM') == 'spaces': | |
os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/fused_act.py") | |
os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/upfirdn2d.py") | |
sys.path.insert(0, 'DualStyleGAN') | |
import dlib | |
import gradio as gr | |
import huggingface_hub | |
import numpy as np | |
import PIL.Image | |
import torch | |
import torch.nn as nn | |
import torchvision.transforms as T | |
from model.dualstylegan import DualStyleGAN | |
from model.encoder.align_all_parallel import align_face | |
from model.encoder.psp import pSp | |
from util import load_image, visualize | |
ORIGINAL_REPO_URL = 'https://github.com/williamyang1991/DualStyleGAN' | |
TITLE = 'williamyang1991/DualStyleGAN' | |
DESCRIPTION = f"""A demo for {ORIGINAL_REPO_URL} | |
You can select style images for cartoon from the table below. | |
The style image index should be in the following range: (cartoon: 0-316, caricature: 0-198, anime: 0-173, arcane: 0-99, comic: 0-100, pixar: 0-121, slamdunk: 0-119) | |
""" | |
ARTICLE = '![cartoon style images](https://user-images.githubusercontent.com/18130694/159848447-96fa5194-32ec-42f0-945a-3b1958bf6e5e.jpg)' | |
TOKEN = os.environ['TOKEN'] | |
MODEL_REPO = 'hysts/DualStyleGAN' | |
def parse_args() -> argparse.Namespace: | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default='cpu') | |
parser.add_argument('--theme', type=str) | |
parser.add_argument('--live', action='store_true') | |
parser.add_argument('--share', action='store_true') | |
parser.add_argument('--port', type=int) | |
parser.add_argument('--disable-queue', | |
dest='enable_queue', | |
action='store_false') | |
parser.add_argument('--allow-flagging', type=str, default='never') | |
parser.add_argument('--allow-screenshot', action='store_true') | |
return parser.parse_args() | |
def load_encoder(device: torch.device) -> nn.Module: | |
ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO, | |
'models/encoder.pt', | |
use_auth_token=TOKEN) | |
ckpt = torch.load(ckpt_path, map_location='cpu') | |
opts = ckpt['opts'] | |
opts['device'] = device.type | |
opts['checkpoint_path'] = ckpt_path | |
opts = argparse.Namespace(**opts) | |
model = pSp(opts) | |
model.to(device) | |
model.eval() | |
return model | |
def load_generator(style_type: str, device: torch.device) -> nn.Module: | |
model = DualStyleGAN(1024, 512, 8, 2, res_index=6) | |
ckpt_path = huggingface_hub.hf_hub_download( | |
MODEL_REPO, f'models/{style_type}/generator.pt', use_auth_token=TOKEN) | |
ckpt = torch.load(ckpt_path, map_location='cpu') | |
model.load_state_dict(ckpt['g_ema']) | |
model.to(device) | |
model.eval() | |
return model | |
def load_exstylecode(style_type: str) -> dict[str, np.ndarray]: | |
if style_type in ['cartoon', 'caricature', 'anime']: | |
filename = 'refined_exstyle_code.npy' | |
else: | |
filename = 'exstyle_code.npy' | |
path = huggingface_hub.hf_hub_download(MODEL_REPO, | |
f'models/{style_type}/{filename}', | |
use_auth_token=TOKEN) | |
exstyles = np.load(path, allow_pickle=True).item() | |
return exstyles | |
def create_transform() -> Callable: | |
transform = T.Compose([ | |
T.Resize(256), | |
T.CenterCrop(256), | |
T.ToTensor(), | |
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]), | |
]) | |
return transform | |
def create_dlib_landmark_model(): | |
path = huggingface_hub.hf_hub_download( | |
'hysts/dlib_face_landmark_model', | |
'shape_predictor_68_face_landmarks.dat', | |
use_auth_token=TOKEN) | |
return dlib.shape_predictor(path) | |
def denormalize(tensor: torch.Tensor) -> torch.Tensor: | |
return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8) | |
def postprocess(tensor: torch.Tensor) -> PIL.Image.Image: | |
tensor = denormalize(tensor) | |
image = tensor.cpu().numpy().transpose(1, 2, 0) | |
return PIL.Image.fromarray(image) | |
def run( | |
image, | |
style_type: str, | |
style_id: float, | |
dlib_landmark_model, | |
encoder: nn.Module, | |
generator_dict: dict[str, nn.Module], | |
exstyle_dict: dict[str, dict[str, np.ndarray]], | |
transform: Callable, | |
device: torch.device, | |
) -> tuple[PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, PIL.Image.Image, | |
PIL.Image, PIL.Image]: | |
generator = generator_dict[style_type] | |
exstyles = exstyle_dict[style_type] | |
style_id = int(style_id) | |
style_id = min(max(0, style_id), len(exstyles) - 1) | |
stylename = list(exstyles.keys())[style_id] | |
image = align_face(filepath=image.name, predictor=dlib_landmark_model) | |
input_data = transform(image).unsqueeze(0).to(device) | |
img_rec, instyle = encoder(input_data, | |
randomize_noise=False, | |
return_latents=True, | |
z_plus_latent=True, | |
return_z_plus_latent=True, | |
resize=False) | |
img_rec = torch.clamp(img_rec.detach(), -1, 1) | |
latent = torch.tensor(exstyles[stylename]).repeat(2, 1, 1).to(device) | |
# latent[0] for both color and structrue transfer and latent[1] for only structrue transfer | |
latent[1, 7:18] = instyle[0, 7:18] | |
exstyle = generator.generator.style( | |
latent.reshape(latent.shape[0] * latent.shape[1], | |
latent.shape[2])).reshape(latent.shape) | |
img_gen, _ = generator([instyle.repeat(2, 1, 1)], | |
exstyle, | |
z_plus_latent=True, | |
truncation=0.7, | |
truncation_latent=0, | |
use_res=True, | |
interp_weights=[0.6] * 7 + [1] * 11) | |
img_gen = torch.clamp(img_gen.detach(), -1, 1) | |
# deactivate color-related layers by setting w_c = 0 | |
img_gen2, _ = generator([instyle], | |
exstyle[0:1], | |
z_plus_latent=True, | |
truncation=0.7, | |
truncation_latent=0, | |
use_res=True, | |
interp_weights=[0.6] * 7 + [0] * 11) | |
img_gen2 = torch.clamp(img_gen2.detach(), -1, 1) | |
img_rec = postprocess(img_rec[0]) | |
img_gen0 = postprocess(img_gen[0]) | |
img_gen1 = postprocess(img_gen[1]) | |
img_gen2 = postprocess(img_gen2[0]) | |
return image, img_rec, img_gen0, img_gen1, img_gen2 | |
def main(): | |
gr.close_all() | |
args = parse_args() | |
device = torch.device(args.device) | |
style_types = [ | |
'cartoon', | |
'caricature', | |
'anime', | |
'arcane', | |
'comic', | |
'pixar', | |
'slamdunk', | |
] | |
generator_dict = { | |
style_type: load_generator(style_type, device) | |
for style_type in style_types | |
} | |
exstyle_dict = { | |
style_type: load_exstylecode(style_type) | |
for style_type in style_types | |
} | |
dlib_landmark_model = create_dlib_landmark_model() | |
encoder = load_encoder(device) | |
transform = create_transform() | |
func = functools.partial(run, | |
dlib_landmark_model=dlib_landmark_model, | |
encoder=encoder, | |
generator_dict=generator_dict, | |
exstyle_dict=exstyle_dict, | |
transform=transform, | |
device=device) | |
func = functools.update_wrapper(func, run) | |
image_paths = sorted(pathlib.Path('images').glob('*')) | |
examples = [[path.as_posix(), 'cartoon', 26] for path in image_paths] | |
gr.Interface( | |
func, | |
[ | |
gr.inputs.Image(type='file', label='Input Image'), | |
gr.inputs.Radio( | |
style_types, | |
type='value', | |
default='cartoon', | |
label='Style Type', | |
), | |
gr.inputs.Number(default=26, label='Style Image Index'), | |
], | |
[ | |
gr.outputs.Image(type='pil', label='Aligned Face'), | |
gr.outputs.Image(type='pil', label='Reconstructed'), | |
gr.outputs.Image(type='pil', | |
label='Result 1 (Color and structure transfer)'), | |
gr.outputs.Image(type='pil', | |
label='Result 2 (Structure transfer only)'), | |
gr.outputs.Image( | |
type='pil', | |
label='Result 3 (Color-related layers deactivated)'), | |
], | |
examples=examples, | |
theme=args.theme, | |
title=TITLE, | |
description=DESCRIPTION, | |
article=ARTICLE, | |
allow_screenshot=args.allow_screenshot, | |
allow_flagging=args.allow_flagging, | |
live=args.live, | |
).launch( | |
enable_queue=args.enable_queue, | |
server_port=args.port, | |
share=args.share, | |
) | |
if __name__ == '__main__': | |
main() | |