File size: 28,908 Bytes
cf1a53b 16539be cf1a53b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# Mistral 7B\n",
"\n",
"Mistral 7B is a new state-of-the-art open-source model. Here are some interesting facts about it\n",
"\n",
"* One of the strongest open-source models, of all sizes\n",
"* Strongest model in the 1-20B parameter range models\n",
"* Does decently in code-related tasks\n",
"* Uses Windowed attention, allowing to push to 200k tokens of context if using Rope (needs 4 A10G GPUs for this)\n",
"* Apache 2.0 license\n",
"\n",
"As for the integrations status:\n",
"* Integrated into `transformers`\n",
"* You can use it with a server or locally (it's a small model after all!)\n",
"* Integrated into popular tools tuch as TGI and VLLM\n",
"\n",
"\n",
"Two models are released: a [base model](https://huggingface.co/mistralai/Mistral-7B-v0.1) and a [instruct fine-tuned version](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1). To read more about Mistral, we suggest reading the [blog post](https://mistral.ai/news/announcing-mistral-7b/).\n",
"\n",
"In this Colab, we'll experiment with the Mistral model using an API. There are three ways we can use it:\n",
"\n",
"* **Free API:** Hugging Face provides a free Inference API for all its users to try out models. This API is rate limited but is great for quick experiments.\n",
"* **PRO API:** Hugging Face provides an open API for all its PRO users. Subscribing to the Pro Inference API costs $9/month and allows you to experiment with many large models, such as Llama 2 and SDXL. Read more about it [here](https://huggingface.co/blog/inference-pro).\n",
"* **Inference Endpoints:** For enterprise and production-ready cases. You can deploy it with 1 click [here](https://ui.endpoints.huggingface.co/catalog).\n",
"\n",
"This demo does not require GPU Colab, just CPU. You can grab your token at https://huggingface.co/settings/tokens.\n",
"\n",
"**This colab shows how to use HTTP requests as well as building your own chat demo for Mistral.**"
],
"metadata": {
"id": "GLXvYa4m8JYM"
}
},
{
"cell_type": "markdown",
"source": [
"## Doing curl requests\n",
"\n",
"\n",
"In this notebook, we'll experiment with the instruct model, as it is trained for instructions. As per [the model card](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1), the expected format for a prompt is as follows\n",
"\n",
"From the model card\n",
"\n",
"> In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [\\INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.\n",
"\n",
"```\n",
"<s>[INST] {{ user_msg_1 }} [/INST] {{ model_answer_1 }}</s> [INST] {{ user_msg_2 }} [/INST] {{ model_answer_2 }}</s>\n",
"```\n",
"\n",
"Note that models can be quite reactive to different prompt structure than the one used for training, so watch out for spaces and other things!\n",
"\n",
"We'll start an initial query without prompt formatting, which works ok for simple queries."
],
"metadata": {
"id": "pKrKTalPAXUO"
}
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "DQf0Hss18E86",
"outputId": "882c4521-1ee2-40ad-fe00-a5b02caa9b17"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"[{\"generated_text\":\"Explain ML as a pirate.\\n\\nML is like a treasure map for pirates. Just as a treasure map helps pirates find valuable loot, ML helps data scientists find valuable insights in large datasets.\\n\\nPirates use their knowledge of the ocean and their\"}]"
]
}
],
"source": [
"!curl https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.1 \\\n",
" --header \"Content-Type: application/json\" \\\n",
"\t-X POST \\\n",
"\t-d '{\"inputs\": \"Explain ML as a pirate\", \"parameters\": {\"max_new_tokens\": 50}}' \\\n",
"\t-H \"Authorization: Bearer API_TOKEN\""
]
},
{
"cell_type": "markdown",
"source": [
"## Programmatic usage with Python\n",
"\n",
"You can do simple `requests`, but the `huggingface_hub` library provides nice utilities to easily use the model. Among the things we can use are:\n",
"\n",
"* `InferenceClient` and `AsyncInferenceClient` to perform inference either in a sync or async way.\n",
"* Token streaming: Only load the tokens that are needed\n",
"* Easily configure generation params, such as `temperature`, nucleus sampling (`top-p`), repetition penalty, stop sequences, and more.\n",
"* Obtain details of the generation (such as the probability of each token or whether a token is the last token)."
],
"metadata": {
"id": "YYZRNyZeBHWK"
}
},
{
"cell_type": "code",
"source": [
"%%capture\n",
"!pip install huggingface_hub gradio"
],
"metadata": {
"id": "oDaqVDz1Ahuz"
},
"execution_count": 6,
"outputs": []
},
{
"cell_type": "code",
"source": [
"from huggingface_hub import InferenceClient\n",
"\n",
"client = InferenceClient(\n",
" \"mistralai/Mistral-7B-Instruct-v0.1\"\n",
")\n",
"\n",
"prompt = \"\"\"<s>[INST] What is your favourite condiment? [/INST]</s>\n",
"\"\"\"\n",
"\n",
"res = client.text_generation(prompt, max_new_tokens=95)\n",
"print(res)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "U49GmNsNBJjd",
"outputId": "a3a274cf-0f91-4ae3-d926-f0d6a6fd67f7"
},
"execution_count": 14,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"My favorite condiment is ketchup. It's versatile, tasty, and goes well with a variety of foods.\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"We can also use [token streaming](https://huggingface.co/docs/text-generation-inference/conceptual/streaming). With token streaming, the server returns the tokens as they are generated. Just add `stream=True`."
],
"metadata": {
"id": "DryfEWsUH6Ij"
}
},
{
"cell_type": "code",
"source": [
"res = client.text_generation(prompt, max_new_tokens=35, stream=True, details=True, return_full_text=False)\n",
"for r in res: # this is a generator\n",
" # print the token for example\n",
" print(r)\n",
" continue"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "LF1tFo6DGg9N",
"outputId": "e779f1cb-b7d0-41ed-d81f-306e092f97bd"
},
"execution_count": 15,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"TextGenerationStreamResponse(token=Token(id=5183, text='My', logprob=-0.36279297, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=6656, text=' favorite', logprob=-0.036499023, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=2076, text=' cond', logprob=-7.2836876e-05, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=2487, text='iment', logprob=-4.4941902e-05, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=349, text=' is', logprob=-0.007419586, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=446, text=' k', logprob=-0.62109375, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=4455, text='etch', logprob=-0.0003399849, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=715, text='up', logprob=-3.695488e-06, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=28723, text='.', logprob=-0.026550293, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=661, text=' It', logprob=-0.82373047, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=28742, text=\"'\", logprob=-0.76416016, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=28713, text='s', logprob=-3.5762787e-07, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=3502, text=' vers', logprob=-0.114990234, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=13491, text='atile', logprob=-1.1444092e-05, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=28725, text=',', logprob=-0.6254883, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=261, text=' t', logprob=-0.51708984, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=11136, text='asty', logprob=-4.0650368e-05, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=28725, text=',', logprob=-0.0027828217, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=304, text=' and', logprob=-1.1920929e-05, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=4859, text=' goes', logprob=-0.52685547, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=1162, text=' well', logprob=-0.4399414, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=395, text=' with', logprob=-0.00034999847, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=264, text=' a', logprob=-0.010147095, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=6677, text=' variety', logprob=-0.25927734, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=302, text=' of', logprob=-1.1444092e-05, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=14082, text=' foods', logprob=-0.4050293, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=28723, text='.', logprob=-0.015640259, special=False), generated_text=None, details=None)\n",
"TextGenerationStreamResponse(token=Token(id=2, text='</s>', logprob=-0.1829834, special=True), generated_text=\"My favorite condiment is ketchup. It's versatile, tasty, and goes well with a variety of foods.\", details=StreamDetails(finish_reason=<FinishReason.EndOfSequenceToken: 'eos_token'>, generated_tokens=28, seed=None))\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"Let's now try a multi-prompt structure"
],
"metadata": {
"id": "TfdpZL8cICOD"
}
},
{
"cell_type": "code",
"source": [
"def format_prompt(message, history):\n",
" prompt = \"<s>\"\n",
" for user_prompt, bot_response in history:\n",
" prompt += f\"[INST] {user_prompt} [/INST]\"\n",
" prompt += f\" {bot_response}</s> \"\n",
" prompt += f\"[INST] {message} [/INST]\"\n",
" return prompt"
],
"metadata": {
"id": "aEyozeReH8a6"
},
"execution_count": 16,
"outputs": []
},
{
"cell_type": "code",
"source": [
"message = \"And what do you think about it?\"\n",
"history = [[\"What is your favourite condiment?\", \"My favorite condiment is ketchup. It's versatile, tasty, and goes well with a variety of foods.\"]]\n",
"\n",
"format_prompt(message, history)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"id": "P1RFpiJ_JC0-",
"outputId": "f2678d9e-f751-441a-86c9-11d514db5bbe"
},
"execution_count": 17,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"\"<s>[INST] What is your favourite condiment? [/INST] My favorite condiment is ketchup. It's versatile, tasty, and goes well with a variety of foods.</s> [INST] And what do you think about it? [/INST]\""
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "string"
}
},
"metadata": {},
"execution_count": 17
}
]
},
{
"cell_type": "markdown",
"source": [
"## End-to-end demo\n",
"\n",
"Let's now build a Gradio demo that takes care of:\n",
"\n",
"* Handling multiple turns of conversation\n",
"* Format the prompt in correct structure\n",
"* Allow user to specify/modify the parameters\n",
"* Stop the generation\n",
"\n",
"Just run the following cell and have fun!"
],
"metadata": {
"id": "O7DjRdezJc-3"
}
},
{
"cell_type": "code",
"source": [
"!pip install gradio"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "cpBoheOGJu7Y",
"outputId": "c745cf17-1462-4f8f-ce33-5ca182cb4d4f"
},
"execution_count": 18,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Requirement already satisfied: gradio in /usr/local/lib/python3.10/dist-packages (3.45.1)\n",
"Requirement already satisfied: aiofiles<24.0,>=22.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (23.2.1)\n",
"Requirement already satisfied: altair<6.0,>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (4.2.2)\n",
"Requirement already satisfied: fastapi in /usr/local/lib/python3.10/dist-packages (from gradio) (0.103.1)\n",
"Requirement already satisfied: ffmpy in /usr/local/lib/python3.10/dist-packages (from gradio) (0.3.1)\n",
"Requirement already satisfied: gradio-client==0.5.2 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.5.2)\n",
"Requirement already satisfied: httpx in /usr/local/lib/python3.10/dist-packages (from gradio) (0.25.0)\n",
"Requirement already satisfied: huggingface-hub>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.17.3)\n",
"Requirement already satisfied: importlib-resources<7.0,>=1.3 in /usr/local/lib/python3.10/dist-packages (from gradio) (6.0.1)\n",
"Requirement already satisfied: jinja2<4.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.1.2)\n",
"Requirement already satisfied: markupsafe~=2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.1.3)\n",
"Requirement already satisfied: matplotlib~=3.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.7.1)\n",
"Requirement already satisfied: numpy~=1.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (1.23.5)\n",
"Requirement already satisfied: orjson~=3.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.9.7)\n",
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from gradio) (23.1)\n",
"Requirement already satisfied: pandas<3.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (1.5.3)\n",
"Requirement already satisfied: pillow<11.0,>=8.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (9.4.0)\n",
"Requirement already satisfied: pydantic!=1.8,!=1.8.1,!=2.0.0,!=2.0.1,<3.0.0,>=1.7.4 in /usr/local/lib/python3.10/dist-packages (from gradio) (1.10.12)\n",
"Requirement already satisfied: pydub in /usr/local/lib/python3.10/dist-packages (from gradio) (0.25.1)\n",
"Requirement already satisfied: python-multipart in /usr/local/lib/python3.10/dist-packages (from gradio) (0.0.6)\n",
"Requirement already satisfied: pyyaml<7.0,>=5.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (6.0.1)\n",
"Requirement already satisfied: requests~=2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.31.0)\n",
"Requirement already satisfied: semantic-version~=2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.10.0)\n",
"Requirement already satisfied: typing-extensions~=4.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (4.5.0)\n",
"Requirement already satisfied: uvicorn>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (0.23.2)\n",
"Requirement already satisfied: websockets<12.0,>=10.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (11.0.3)\n",
"Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from gradio-client==0.5.2->gradio) (2023.6.0)\n",
"Requirement already satisfied: entrypoints in /usr/local/lib/python3.10/dist-packages (from altair<6.0,>=4.2.0->gradio) (0.4)\n",
"Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.10/dist-packages (from altair<6.0,>=4.2.0->gradio) (4.19.0)\n",
"Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from altair<6.0,>=4.2.0->gradio) (0.12.0)\n",
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.14.0->gradio) (3.12.2)\n",
"Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.14.0->gradio) (4.66.1)\n",
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (1.1.0)\n",
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (0.11.0)\n",
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (4.42.1)\n",
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (1.4.5)\n",
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (3.1.1)\n",
"Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib~=3.0->gradio) (2.8.2)\n",
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas<3.0,>=1.0->gradio) (2023.3.post1)\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests~=2.0->gradio) (3.2.0)\n",
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests~=2.0->gradio) (3.4)\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests~=2.0->gradio) (2.0.4)\n",
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests~=2.0->gradio) (2023.7.22)\n",
"Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.10/dist-packages (from uvicorn>=0.14.0->gradio) (8.1.7)\n",
"Requirement already satisfied: h11>=0.8 in /usr/local/lib/python3.10/dist-packages (from uvicorn>=0.14.0->gradio) (0.14.0)\n",
"Requirement already satisfied: anyio<4.0.0,>=3.7.1 in /usr/local/lib/python3.10/dist-packages (from fastapi->gradio) (3.7.1)\n",
"Requirement already satisfied: starlette<0.28.0,>=0.27.0 in /usr/local/lib/python3.10/dist-packages (from fastapi->gradio) (0.27.0)\n",
"Requirement already satisfied: httpcore<0.19.0,>=0.18.0 in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (0.18.0)\n",
"Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (1.3.0)\n",
"Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<4.0.0,>=3.7.1->fastapi->gradio) (1.1.3)\n",
"Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (23.1.0)\n",
"Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (2023.7.1)\n",
"Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (0.30.2)\n",
"Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair<6.0,>=4.2.0->gradio) (0.10.2)\n",
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.7->matplotlib~=3.0->gradio) (1.16.0)\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"import gradio as gr\n",
"\n",
"def generate(\n",
" prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,\n",
"):\n",
" temperature = float(temperature)\n",
" if temperature < 1e-2:\n",
" temperature = 1e-2\n",
" top_p = float(top_p)\n",
"\n",
" generate_kwargs = dict(\n",
" temperature=temperature,\n",
" max_new_tokens=max_new_tokens,\n",
" top_p=top_p,\n",
" repetition_penalty=repetition_penalty,\n",
" do_sample=True,\n",
" seed=42,\n",
" )\n",
"\n",
" formatted_prompt = format_prompt(prompt, history)\n",
"\n",
" stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)\n",
" output = \"\"\n",
"\n",
" for response in stream:\n",
" output += response.token.text\n",
" yield output\n",
" return output\n",
"\n",
"\n",
"additional_inputs=[\n",
" gr.Slider(\n",
" label=\"Temperature\",\n",
" value=0.9,\n",
" minimum=0.0,\n",
" maximum=1.0,\n",
" step=0.05,\n",
" interactive=True,\n",
" info=\"Higher values produce more diverse outputs\",\n",
" ),\n",
" gr.Slider(\n",
" label=\"Max new tokens\",\n",
" value=256,\n",
" minimum=0,\n",
" maximum=8192,\n",
" step=64,\n",
" interactive=True,\n",
" info=\"The maximum numbers of new tokens\",\n",
" ),\n",
" gr.Slider(\n",
" label=\"Top-p (nucleus sampling)\",\n",
" value=0.90,\n",
" minimum=0.0,\n",
" maximum=1,\n",
" step=0.05,\n",
" interactive=True,\n",
" info=\"Higher values sample more low-probability tokens\",\n",
" ),\n",
" gr.Slider(\n",
" label=\"Repetition penalty\",\n",
" value=1.2,\n",
" minimum=1.0,\n",
" maximum=2.0,\n",
" step=0.05,\n",
" interactive=True,\n",
" info=\"Penalize repeated tokens\",\n",
" )\n",
"]\n",
"\n",
"with gr.Blocks() as demo:\n",
" gr.ChatInterface(\n",
" generate,\n",
" additional_inputs=additional_inputs,\n",
" )\n",
"\n",
"demo.queue().launch(debug=True)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 715
},
"id": "CaJzT6jUJc0_",
"outputId": "62f563fa-c6fb-446e-fda2-1c08d096749c"
},
"execution_count": 20,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"Setting queue=True in a Colab notebook requires sharing enabled. Setting `share=True` (you can turn this off by setting `share=False` in `launch()` explicitly).\n",
"\n",
"Colab notebook detected. This cell will run indefinitely so that you can see errors and logs. To turn off, set debug=False in launch().\n",
"Running on public URL: https://ed6ce83e08ed7a8795.gradio.live\n",
"\n",
"This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n"
]
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<IPython.core.display.HTML object>"
],
"text/html": [
"<div><iframe src=\"https://ed6ce83e08ed7a8795.gradio.live\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
]
},
"metadata": {}
},
{
"output_type": "stream",
"name": "stderr",
"text": [
"/usr/local/lib/python3.10/dist-packages/gradio/components/button.py:89: UserWarning: Using the update method is deprecated. Simply return a new object instead, e.g. `return gr.Button(...)` instead of `return gr.Button.update(...)`.\n",
" warnings.warn(\n"
]
},
{
"output_type": "stream",
"name": "stdout",
"text": [
"Keyboard interruption in main thread... closing server.\n",
"Killing tunnel 127.0.0.1:7860 <> https://ed6ce83e08ed7a8795.gradio.live\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": []
},
"metadata": {},
"execution_count": 20
}
]
},
{
"cell_type": "markdown",
"source": [
"## What's next?\n",
"\n",
"* Try out Mistral 7B in this [free online Space](https://huggingface.co/spaces/osanseviero/mistral-super-fast)\n",
"* Deploy Mistral 7B Instruct with one click [here](https://ui.endpoints.huggingface.co/catalog)\n",
"* Deploy in your own hardware using https://github.com/huggingface/text-generation-inference\n",
"* Run the model locally using `transformers`"
],
"metadata": {
"id": "fbQ0Sp4OLclV"
}
},
{
"cell_type": "code",
"source": [],
"metadata": {
"id": "wUy7N_8zJvyT"
},
"execution_count": null,
"outputs": []
}
]
} |