from __future__ import annotations from fastapi import FastAPI, File, UploadFile from fastapi.responses import FileResponse from fastapi.staticfiles import StaticFiles from fastapi import FastAPI, File, UploadFile, Form from fastapi.responses import FileResponse import torch import shutil import cv2 import numpy as np import dlib from torchvision import transforms import torch.nn.functional as F from vtoonify_model import Model # Importing the Model class from vtoonify_model.py app = FastAPI() model = None @app.on_event("startup") async def load_model(): global model model = Model(device='cuda' if torch.cuda.is_available() else 'cpu') from fastapi.responses import StreamingResponse from io import BytesIO @app.post("/upload/") async def process_image(file: UploadFile = File(...), top: int = Form(...), bottom: int = Form(...), left: int = Form(...), right: int = Form(...)): if model is None: return {"error": "Model not loaded."} # Save the uploaded image locally with open("uploaded_image.jpg", "wb") as buffer: shutil.copyfileobj(file.file, buffer) # Process the uploaded image aligned_face, instyle, message = model.detect_and_align_image("uploaded_image.jpg", top, bottom, left, right) processed_image, message = model.image_toonify(aligned_face, instyle, model.exstyle, style_degree=0.5, style_type='cartoon1') # Convert processed image to bytes image_bytes = cv2.imencode('.jpg', processed_image)[1].tobytes() # Return the processed image as a streaming response return StreamingResponse(BytesIO(image_bytes), media_type="image/jpeg") app.mount("/", StaticFiles(directory="AB", html=True), name="static") @app.get("/") def index() -> FileResponse: return FileResponse(path="/app/AB/index.html", media_type="text/html")