Update main.py
Browse files
main.py
CHANGED
@@ -34,160 +34,9 @@ import huggingface_hub
|
|
34 |
import os
|
35 |
|
36 |
app = FastAPI()
|
37 |
-
model = None
|
38 |
|
39 |
-
MODEL_REPO = 'PKUWilliamYang/VToonify'
|
40 |
-
|
41 |
-
class Model():
|
42 |
-
def __init__(self, device):
|
43 |
-
super().__init__()
|
44 |
-
|
45 |
-
self.device = device
|
46 |
-
self.style_types = {
|
47 |
-
'cartoon1': ['vtoonify_d_cartoon/vtoonify_s026_d0.5.pt', 26],
|
48 |
-
|
49 |
-
}
|
50 |
-
|
51 |
-
self.landmarkpredictor = self._create_dlib_landmark_model()
|
52 |
-
self.parsingpredictor = self._create_parsing_model()
|
53 |
-
self.pspencoder = self._load_encoder()
|
54 |
-
self.transform = transforms.Compose([
|
55 |
-
transforms.ToTensor(),
|
56 |
-
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
|
57 |
-
])
|
58 |
-
|
59 |
-
self.vtoonify, self.exstyle = self._load_default_model()
|
60 |
-
self.color_transfer = False
|
61 |
-
self.style_name = 'cartoon1'
|
62 |
-
self.video_limit_cpu = 100
|
63 |
-
self.video_limit_gpu = 300
|
64 |
-
|
65 |
-
@staticmethod
|
66 |
-
def _create_dlib_landmark_model():
|
67 |
-
return dlib.shape_predictor(huggingface_hub.hf_hub_download(MODEL_REPO,
|
68 |
-
'models/shape_predictor_68_face_landmarks.dat'))
|
69 |
-
|
70 |
-
def _create_parsing_model(self):
|
71 |
-
parsingpredictor = BiSeNet(n_classes=19)
|
72 |
-
parsingpredictor.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO, 'models/faceparsing.pth'),
|
73 |
-
map_location=lambda storage, loc: storage))
|
74 |
-
parsingpredictor.to(self.device).eval()
|
75 |
-
return parsingpredictor
|
76 |
-
|
77 |
-
def _load_encoder(self) -> nn.Module:
|
78 |
-
style_encoder_path = huggingface_hub.hf_hub_download(MODEL_REPO,'models/encoder.pt')
|
79 |
-
return load_psp_standalone(style_encoder_path, self.device)
|
80 |
-
|
81 |
-
def _load_default_model(self) -> tuple[torch.Tensor, str]:
|
82 |
-
vtoonify = VToonify(backbone = 'dualstylegan')
|
83 |
-
vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,
|
84 |
-
'models/vtoonify_d_cartoon/vtoonify_s026_d0.5.pt'),
|
85 |
-
map_location=lambda storage, loc: storage)['g_ema'])
|
86 |
-
vtoonify.to(self.device)
|
87 |
-
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/vtoonify_d_cartoon/exstyle_code.npy'), allow_pickle=True).item()
|
88 |
-
exstyle = torch.tensor(tmp[list(tmp.keys())[26]]).to(self.device)
|
89 |
-
with torch.no_grad():
|
90 |
-
exstyle = vtoonify.zplus2wplus(exstyle)
|
91 |
-
return vtoonify, exstyle
|
92 |
-
|
93 |
-
def load_model(self, style_type: str) -> tuple[torch.Tensor, str]:
|
94 |
-
if 'illustration' in style_type:
|
95 |
-
self.color_transfer = True
|
96 |
-
else:
|
97 |
-
self.color_transfer = False
|
98 |
-
if style_type not in self.style_types.keys():
|
99 |
-
return None, 'Oops, wrong Style Type. Please select a valid model.'
|
100 |
-
self.style_name = style_type
|
101 |
-
model_path, ind = self.style_types[style_type]
|
102 |
-
style_path = os.path.join('models',os.path.dirname(model_path),'exstyle_code.npy')
|
103 |
-
self.vtoonify.load_state_dict(torch.load(huggingface_hub.hf_hub_download(MODEL_REPO,'models/'+model_path),
|
104 |
-
map_location=lambda storage, loc: storage)['g_ema'])
|
105 |
-
tmp = np.load(huggingface_hub.hf_hub_download(MODEL_REPO, style_path), allow_pickle=True).item()
|
106 |
-
exstyle = torch.tensor(tmp[list(tmp.keys())[ind]]).to(self.device)
|
107 |
-
with torch.no_grad():
|
108 |
-
exstyle = self.vtoonify.zplus2wplus(exstyle)
|
109 |
-
return exstyle, 'Model of %s loaded.'%(style_type)
|
110 |
-
|
111 |
-
def detect_and_align(self, frame, top, bottom, left, right, return_para=False):
|
112 |
-
message = 'Error: no face detected! Please retry or change the photo.'
|
113 |
-
paras = get_video_crop_parameter(frame, self.landmarkpredictor, [left, right, top, bottom])
|
114 |
-
instyle = None
|
115 |
-
h, w, scale = 0, 0, 0
|
116 |
-
if paras is not None:
|
117 |
-
h,w,top,bottom,left,right,scale = paras
|
118 |
-
H, W = int(bottom-top), int(right-left)
|
119 |
-
# for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
|
120 |
-
kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
|
121 |
-
if scale <= 0.75:
|
122 |
-
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
|
123 |
-
if scale <= 0.375:
|
124 |
-
frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
|
125 |
-
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
|
126 |
-
with torch.no_grad():
|
127 |
-
I = align_face(frame, self.landmarkpredictor)
|
128 |
-
if I is not None:
|
129 |
-
I = self.transform(I).unsqueeze(dim=0).to(self.device)
|
130 |
-
instyle = self.pspencoder(I)
|
131 |
-
instyle = self.vtoonify.zplus2wplus(instyle)
|
132 |
-
message = 'Successfully rescale the frame to (%d, %d)'%(bottom-top, right-left)
|
133 |
-
else:
|
134 |
-
frame = np.zeros((256,256,3), np.uint8)
|
135 |
-
else:
|
136 |
-
frame = np.zeros((256,256,3), np.uint8)
|
137 |
-
if return_para:
|
138 |
-
return frame, instyle, message, w, h, top, bottom, left, right, scale
|
139 |
-
return frame, instyle, message
|
140 |
-
|
141 |
-
#@torch.inference_mode()
|
142 |
-
def detect_and_align_image(self, image: str, top: int, bottom: int, left: int, right: int
|
143 |
-
) -> tuple[np.ndarray, torch.Tensor, str]:
|
144 |
-
if image is None:
|
145 |
-
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
|
146 |
-
frame = cv2.imread(image)
|
147 |
-
if frame is None:
|
148 |
-
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load the image.'
|
149 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
150 |
-
return self.detect_and_align(frame, top, bottom, left, right)
|
151 |
-
|
152 |
-
def detect_and_align_video(self, video: str, top: int, bottom: int, left: int, right: int
|
153 |
-
) -> tuple[np.ndarray, torch.Tensor, str]:
|
154 |
-
if video is None:
|
155 |
-
return np.zeros((256,256,3), np.uint8), None, 'Error: fail to load empty file.'
|
156 |
-
video_cap = cv2.VideoCapture(video)
|
157 |
-
if video_cap.get(7) == 0:
|
158 |
-
video_cap.release()
|
159 |
-
return np.zeros((256,256,3), np.uint8), torch.zeros(1,18,512).to(self.device), 'Error: fail to load the video.'
|
160 |
-
success, frame = video_cap.read()
|
161 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
162 |
-
video_cap.release()
|
163 |
-
return self.detect_and_align(frame, top, bottom, left, right)
|
164 |
-
|
165 |
|
166 |
-
def image_toonify(self, aligned_face: np.ndarray, instyle: torch.Tensor, exstyle: torch.Tensor, style_degree: float, style_type: str) -> tuple[np.ndarray, str]:
|
167 |
-
#print(style_type + ' ' + self.style_name)
|
168 |
-
if instyle is None or aligned_face is None:
|
169 |
-
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the input. Please go to Step 2 and Rescale Image/First Frame again.'
|
170 |
-
if self.style_name != style_type:
|
171 |
-
exstyle, _ = self.load_model(style_type)
|
172 |
-
if exstyle is None:
|
173 |
-
return np.zeros((256,256,3), np.uint8), 'Opps, something wrong with the style type. Please go to Step 1 and load model again.'
|
174 |
-
with torch.no_grad():
|
175 |
-
if self.color_transfer:
|
176 |
-
s_w = exstyle
|
177 |
-
else:
|
178 |
-
s_w = instyle.clone()
|
179 |
-
s_w[:,:7] = exstyle[:,:7]
|
180 |
-
|
181 |
-
x = self.transform(aligned_face).unsqueeze(dim=0).to(self.device)
|
182 |
-
x_p = F.interpolate(self.parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0],
|
183 |
-
scale_factor=0.5, recompute_scale_factor=False).detach()
|
184 |
-
inputs = torch.cat((x, x_p/16.), dim=1)
|
185 |
-
y_tilde = self.vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = style_degree)
|
186 |
-
y_tilde = torch.clamp(y_tilde, -1, 1)
|
187 |
-
print('*** Toonify %dx%d image with style of %s'%(y_tilde.shape[2], y_tilde.shape[3], style_type))
|
188 |
-
return ((y_tilde[0].cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8), 'Successfully toonify the image with style of %s'%(self.style_name)
|
189 |
|
190 |
-
|
191 |
@app.on_event("startup")
|
192 |
async def load_model():
|
193 |
global model
|
|
|
34 |
import os
|
35 |
|
36 |
app = FastAPI()
|
|
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
|
|
40 |
@app.on_event("startup")
|
41 |
async def load_model():
|
42 |
global model
|