|
import torch |
|
import numpy as np |
|
import math |
|
from torch import nn |
|
from model.stylegan.model import ConvLayer, EqualLinear, Generator, ResBlock |
|
from model.dualstylegan import AdaptiveInstanceNorm, AdaResBlock, DualStyleGAN |
|
import torch.nn.functional as F |
|
|
|
|
|
class ConditionalDiscriminator(nn.Module): |
|
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], use_condition=False, style_num=None): |
|
super().__init__() |
|
|
|
channels = { |
|
4: 512, |
|
8: 512, |
|
16: 512, |
|
32: 512, |
|
64: 256 * channel_multiplier, |
|
128: 128 * channel_multiplier, |
|
256: 64 * channel_multiplier, |
|
512: 32 * channel_multiplier, |
|
1024: 16 * channel_multiplier, |
|
} |
|
|
|
convs = [ConvLayer(3, channels[size], 1)] |
|
|
|
log_size = int(math.log(size, 2)) |
|
|
|
in_channel = channels[size] |
|
|
|
for i in range(log_size, 2, -1): |
|
out_channel = channels[2 ** (i - 1)] |
|
|
|
convs.append(ResBlock(in_channel, out_channel, blur_kernel)) |
|
|
|
in_channel = out_channel |
|
|
|
self.convs = nn.Sequential(*convs) |
|
|
|
self.stddev_group = 4 |
|
self.stddev_feat = 1 |
|
self.use_condition = use_condition |
|
|
|
if self.use_condition: |
|
self.condition_dim = 128 |
|
|
|
self.label_mapper = nn.Sequential( |
|
nn.Linear(1, 64), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Linear(64, 64), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Linear(64, self.condition_dim//2), |
|
) |
|
|
|
self.style_mapper = nn.Embedding(style_num, self.condition_dim-self.condition_dim//2) |
|
else: |
|
self.condition_dim = 1 |
|
|
|
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3) |
|
self.final_linear = nn.Sequential( |
|
EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"), |
|
EqualLinear(channels[4], self.condition_dim), |
|
) |
|
|
|
def forward(self, input, degree_label=None, style_ind=None): |
|
out = self.convs(input) |
|
|
|
batch, channel, height, width = out.shape |
|
group = min(batch, self.stddev_group) |
|
stddev = out.view( |
|
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width |
|
) |
|
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8) |
|
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2) |
|
stddev = stddev.repeat(group, 1, height, width) |
|
out = torch.cat([out, stddev], 1) |
|
|
|
out = self.final_conv(out) |
|
out = out.view(batch, -1) |
|
|
|
if self.use_condition: |
|
h = self.final_linear(out) |
|
condition = torch.cat((self.label_mapper(degree_label), self.style_mapper(style_ind)), dim=1) |
|
out = (h * condition).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.condition_dim)) |
|
else: |
|
out = self.final_linear(out) |
|
|
|
return out |
|
|
|
|
|
class VToonifyResBlock(nn.Module): |
|
def __init__(self, fin): |
|
super().__init__() |
|
|
|
self.conv = nn.Conv2d(fin, fin, 3, 1, 1) |
|
self.conv2 = nn.Conv2d(fin, fin, 3, 1, 1) |
|
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
|
|
def forward(self, x): |
|
out = self.lrelu(self.conv(x)) |
|
out = self.lrelu(self.conv2(out)) |
|
out = (out + x) / math.sqrt(2) |
|
return out |
|
|
|
class Fusion(nn.Module): |
|
def __init__(self, in_channels, skip_channels, out_channels): |
|
super().__init__() |
|
|
|
|
|
self.conv = nn.Conv2d(in_channels + skip_channels, out_channels, 3, 1, 1, bias=True) |
|
self.norm = AdaptiveInstanceNorm(in_channels + skip_channels, 128) |
|
self.conv2 = nn.Conv2d(in_channels + skip_channels, 1, 3, 1, 1, bias=True) |
|
|
|
self.linear = nn.Sequential( |
|
nn.Linear(1, 64), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Linear(64, 128), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True) |
|
) |
|
|
|
def forward(self, f_G, f_E, d_s=1): |
|
|
|
label = self.linear(torch.zeros(f_G.size(0),1).to(f_G.device) + d_s) |
|
out = torch.cat([f_G, abs(f_G-f_E)], dim=1) |
|
m_E = (F.relu(self.conv2(self.norm(out, label)))).tanh() |
|
f_out = self.conv(torch.cat([f_G, f_E * m_E], dim=1)) |
|
return f_out, m_E |
|
|
|
class VToonify(nn.Module): |
|
def __init__(self, |
|
in_size=256, |
|
out_size=1024, |
|
img_channels=3, |
|
style_channels=512, |
|
num_mlps=8, |
|
channel_multiplier=2, |
|
num_res_layers=6, |
|
backbone = 'dualstylegan', |
|
): |
|
|
|
super().__init__() |
|
|
|
self.backbone = backbone |
|
if self.backbone == 'dualstylegan': |
|
|
|
self.generator = DualStyleGAN(out_size, style_channels, num_mlps, channel_multiplier) |
|
else: |
|
|
|
self.generator = Generator(out_size, style_channels, num_mlps, channel_multiplier) |
|
|
|
self.in_size = in_size |
|
self.style_channels = style_channels |
|
channels = self.generator.channels |
|
|
|
|
|
num_styles = int(np.log2(out_size)) * 2 - 2 |
|
encoder_res = [2**i for i in range(int(np.log2(in_size)), 4, -1)] |
|
self.encoder = nn.ModuleList() |
|
self.encoder.append( |
|
nn.Sequential( |
|
nn.Conv2d(img_channels+19, 32, 3, 1, 1, bias=True), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(32, channels[in_size], 3, 1, 1, bias=True), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True))) |
|
|
|
for res in encoder_res: |
|
in_channels = channels[res] |
|
if res > 32: |
|
out_channels = channels[res // 2] |
|
block = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, 3, 2, 1, bias=True), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True), |
|
nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=True), |
|
nn.LeakyReLU(negative_slope=0.2, inplace=True)) |
|
self.encoder.append(block) |
|
else: |
|
layers = [] |
|
for _ in range(num_res_layers): |
|
layers.append(VToonifyResBlock(in_channels)) |
|
self.encoder.append(nn.Sequential(*layers)) |
|
block = nn.Conv2d(in_channels, img_channels, 1, 1, 0, bias=True) |
|
self.encoder.append(block) |
|
|
|
|
|
self.fusion_out = nn.ModuleList() |
|
self.fusion_skip = nn.ModuleList() |
|
for res in encoder_res[::-1]: |
|
num_channels = channels[res] |
|
if self.backbone == 'dualstylegan': |
|
self.fusion_out.append( |
|
Fusion(num_channels, num_channels, num_channels)) |
|
else: |
|
self.fusion_out.append( |
|
nn.Conv2d(num_channels * 2, num_channels, 3, 1, 1, bias=True)) |
|
|
|
self.fusion_skip.append( |
|
nn.Conv2d(num_channels + 3, 3, 3, 1, 1, bias=True)) |
|
|
|
|
|
if self.backbone == 'dualstylegan': |
|
self.res = nn.ModuleList() |
|
self.res.append(AdaResBlock(self.generator.channels[2 ** 2])) |
|
for i in range(3, 6): |
|
out_channel = self.generator.channels[2 ** i] |
|
self.res.append(AdaResBlock(out_channel, dilation=2**(5-i))) |
|
self.res.append(AdaResBlock(out_channel, dilation=2**(5-i))) |
|
|
|
|
|
def forward(self, x, style, d_s=None, return_mask=False, return_feat=False): |
|
|
|
if style is not None and style.ndim < 3: |
|
if self.backbone == 'dualstylegan': |
|
resstyles = self.generator.style(style).unsqueeze(1).repeat(1, self.generator.n_latent, 1) |
|
adastyles = style.unsqueeze(1).repeat(1, self.generator.n_latent, 1) |
|
elif style is not None: |
|
nB, nL, nD = style.shape |
|
if self.backbone == 'dualstylegan': |
|
resstyles = self.generator.style(style.reshape(nB*nL, nD)).reshape(nB, nL, nD) |
|
adastyles = style |
|
if self.backbone == 'dualstylegan': |
|
adastyles = adastyles.clone() |
|
for i in range(7, self.generator.n_latent): |
|
adastyles[:, i] = self.generator.res[i](adastyles[:, i]) |
|
|
|
|
|
feat = x |
|
encoder_features = [] |
|
|
|
for block in self.encoder[:-2]: |
|
feat = block(feat) |
|
encoder_features.append(feat) |
|
encoder_features = encoder_features[::-1] |
|
|
|
for ii, block in enumerate(self.encoder[-2]): |
|
feat = block(feat) |
|
|
|
if self.backbone == 'dualstylegan': |
|
feat = self.res[ii+1](feat, resstyles[:, ii+1], d_s) |
|
|
|
out = feat |
|
skip = self.encoder[-1](feat) |
|
if return_feat: |
|
return out, skip |
|
|
|
|
|
_index = 1 |
|
m_Es = [] |
|
for conv1, conv2, to_rgb in zip( |
|
self.stylegan().convs[6::2], self.stylegan().convs[7::2], self.stylegan().to_rgbs[3:]): |
|
|
|
|
|
if 2 ** (5+((_index-1)//2)) <= self.in_size: |
|
fusion_index = (_index - 1) // 2 |
|
f_E = encoder_features[fusion_index] |
|
|
|
if self.backbone == 'dualstylegan': |
|
out, m_E = self.fusion_out[fusion_index](out, f_E, d_s) |
|
skip = self.fusion_skip[fusion_index](torch.cat([skip, f_E*m_E], dim=1)) |
|
m_Es += [m_E] |
|
else: |
|
out = self.fusion_out[fusion_index](torch.cat([out, f_E], dim=1)) |
|
skip = self.fusion_skip[fusion_index](torch.cat([skip, f_E], dim=1)) |
|
|
|
|
|
batch, _, height, width = out.shape |
|
noise = x.new_empty(batch, 1, height * 2, width * 2).normal_().detach() * 0.0 |
|
|
|
out = conv1(out, adastyles[:, _index+6], noise=noise) |
|
out = conv2(out, adastyles[:, _index+7], noise=noise) |
|
skip = to_rgb(out, adastyles[:, _index+8], skip) |
|
_index += 2 |
|
|
|
image = skip |
|
if return_mask and self.backbone == 'dualstylegan': |
|
return image, m_Es |
|
return image |
|
|
|
def stylegan(self): |
|
if self.backbone == 'dualstylegan': |
|
return self.generator.generator |
|
else: |
|
return self.generator |
|
|
|
def zplus2wplus(self, zplus): |
|
return self.stylegan().style(zplus.reshape(zplus.shape[0]*zplus.shape[1], zplus.shape[2])).reshape(zplus.shape) |