Spaces:
Sleeping
Sleeping
import gradio as gr | |
import random | |
import time | |
from ctransformers import AutoModelForCausalLM | |
params = { | |
"max_new_tokens":512, | |
"stop":["<end>" ,"<|endoftext|>"], | |
"temperature":0.7, | |
"top_p":0.8, | |
"stream":True, | |
"batch_size": 8} | |
llm = AutoModelForCausalLM.from_pretrained("Aspik101/trurl-2-13b-GGML", model_type="llama") | |
with gr.Blocks() as demo: | |
chatbot = gr.Chatbot() | |
msg = gr.Textbox() | |
clear = gr.Button("Clear") | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
def bot(history): | |
print(history) | |
stream = llm(prompt = f"Jesteś AI assystentem. Odpowiadaj po polski. <user>: {history}. <assistant>:", **params) | |
history[-1][1] = "" | |
answer_save = "" | |
for character in stream: | |
history[-1][1] += character | |
answer_save += character | |
time.sleep(0.005) | |
yield history | |
print(answer_save) | |
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
clear.click(lambda: None, None, chatbot, queue=False) | |
demo.queue() | |
demo.launch() |