import streamlit as st from transformers import pipeline x = st.slider('Select a value') st.write(x, 'squared is', x * x) # Title and Description st.title("Translation Web App") st.write(""" # Powered by Hugging Face and Streamlit This app uses a pre-trained NLP model from Hugging Face to translate text from one language to another. You can enter text and select the source and target languages for translation. """) # Cache model to improve performance @st.cache_resource def load_model(): print("Loading translation model...") return pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru") # Translation model: English to Russian # Initialize Hugging Face Translation Pipeline translator = load_model() # Language selection (user chooses source and target language) source_language = st.selectbox("Select Source Language", ["English", "French", "German", "Spanish", "Russian"]) target_language = st.selectbox("Select Target Language", ["English", "French", "German", "Spanish", "Russian"]) # Text input from the user user_input = st.text_area("Enter text to translate:") # Translate the input text if user_input: if source_language == target_language: st.write("Source and target language are the same. Please choose different languages.") else: # Translate using Hugging Face model translation = translator(user_input) translated_text = translation[0]['translation_text'] st.write(f"### Translated Text ({target_language}):") st.write(translated_text)