leaderboard / app.py
Ori's picture
Update app.py
8d8c195 verified
raw
history blame
11.6 kB
import os
import json
import datetime
from email.utils import parseaddr
import numpy as np
import gradio as gr
import pandas as pd
from datasets import load_dataset
from evaluation.evaluator import question_scorer as eval_scorer
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import HfApi
from content import format_error, format_warning, format_log, TITLE
# Placeholder for the question_scorer function
def question_scorer(prediction, gold_answer):
acc, has_ans = eval_scorer(prediction, gold_answer)
return acc, has_ans
# Constants and Configuration
TOKEN = os.environ.get("TOKEN", None)
OWNER = "Ori"
DATA_DATASET = f"Ori/AssistantBench_V1.0"
RESULTS_DATASET = f"Ori/results"
SUBMISSION_DATASET = f"AssistantBench/submissions"
LEADERBOARD_PATH = f"{OWNER}/leaderboard"
api = HfApi()
YEAR_VERSION = "default"
os.makedirs("scored", exist_ok=True)
# Load datasets
eval_results = load_dataset(RESULTS_DATASET, token=TOKEN, download_mode="force_redownload", trust_remote_code=True)
gold_results = load_dataset(DATA_DATASET, token=TOKEN, trust_remote_code=True)
gold_answers = {split: {row["id"]: row["answer"] for row in gold_results[split]} for split in ["test"]}
gold_difficulties = {split: {row["id"]: row["difficulty"] for row in gold_results[split]} for split in ["test"]}
# Function to get dataframe from results
def get_dataframe_from_results(eval_results, split):
local_df = eval_results[split]
df = pd.DataFrame(local_df)
df = df.sort_values(by=["Accuracy"], ascending=False)
numeric_cols = [c for c in local_df.column_names if "score" in c]
df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
return df
# Update function to format dataframe
def format_dataframe(df):
df["Accuracy"] = df["Accuracy"].apply(lambda x: f"**{x:.2f}**")
if "URL" in df.columns:
df["Model Name"] = df.apply(lambda row: f"[{row['Model Name']}]({row['URL']})", axis=1)
df = df.drop(columns=["URL"])
#df = df.rename(columns={"Model Family": "Base Model"})
df = df[["Model Name", "Accuracy", "Answer rate", "Precision", "EM", "Accuracy (easy)", "Accuracy (medium)", "Accuracy (hard)", "Base Model", "Organization"]]
return df
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", trust_remote_code=True)
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
eval_dataframe_test = format_dataframe(eval_dataframe_test)
# Function to restart the space
def restart_space():
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
TYPES = ["markdown", "markdown", "number", "number", "number", "number", "number", "number", "str", "str"]
# Function to add a new evaluation
def add_new_eval(
model_name: str,
model_family: str,
url: str,
path_to_file: str,
organization: str,
mail: str,
):
_, parsed_mail = parseaddr(mail)
if "@" not in parsed_mail:
return format_warning("Please provide a valid email address.")
print("Adding new eval")
if model_name.lower() in set(
[m.lower() for m in eval_results["test"]["Model Name"]]) and organization.lower() in set(
[o.lower() for o in eval_results["test"]["Organization"]]):
return format_warning("This model has already been submitted.")
if path_to_file is None:
return format_warning("Please attach a file.")
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=path_to_file.name,
path_in_repo=f"{organization}/{model_name}/{YEAR_VERSION}_test_raw_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=TOKEN
)
file_path = path_to_file.name
scores = 0
num_questions = 0
difficulty_scores = {"Easy": 0, "Medium": 0, "Hard": 0}
difficulty_counts = {"Easy": 0, "Medium": 0, "Hard": 0}
all_scores = list()
with open(f"scored/{organization}_{model_name}.jsonl", "w") as scored_file:
with open(file_path, 'r') as f:
submitted_ids = set()
for ix, line in enumerate(f):
try:
task = json.loads(line)
except Exception:
return format_error(f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file.")
if "answer" not in task:
return format_error(
f"Line {ix} contains no answer key. Please fix it and resubmit your file.")
answer = task["answer"]
task_id = task["id"]
if task_id not in gold_answers["test"]:
return format_error(
f"{task_id} not found in test set. Are you sure you submitted the correct file?")
score, has_ans = question_scorer(task['answer'], gold_answers["test"][task_id])
difficulty = gold_difficulties["test"][task_id]
scored_file.write(
json.dumps({
"id": task_id,
"model_answer": answer,
"score": score,
"has_ans": has_ans
}) + "\n"
)
all_scores.append({"score": score, "has_ans": has_ans, "model_answer": answer, 'id': task_id})
submitted_ids.add(task["id"])
scores += score
num_questions += 1
difficulty_scores[difficulty] += score
difficulty_counts[difficulty] += 1
# Check if all gold answer IDs are present in the submission
missing_ids = set(gold_answers["test"].keys()) - submitted_ids
if missing_ids:
return format_error(f"Submission is missing the following IDs: {', '.join(missing_ids)}")
accuracy_easy = difficulty_scores["Easy"] / difficulty_counts["Easy"] if difficulty_counts["Easy"] > 0 else 0
accuracy_medium = difficulty_scores["Medium"] / difficulty_counts["Medium"] if difficulty_counts["Medium"] > 0 else 0
accuracy_hard = difficulty_scores["Hard"] / difficulty_counts["Hard"] if difficulty_counts["Hard"] > 0 else 0
api.upload_file(
repo_id=SUBMISSION_DATASET,
path_or_fileobj=f"scored/{organization}_{model_name}.jsonl",
path_in_repo=f"{organization}/{model_name}/{YEAR_VERSION}_test_scored_{datetime.datetime.today()}.jsonl",
repo_type="dataset",
token=TOKEN
)
accuracy = float("{:.1f}".format(np.average([x["score"] for x in all_scores]) * 100))
coverage = float("{:.1f}".format(np.average([x["has_ans"] for x in all_scores]) * 100))
em = float("{:.1f}".format(np.average([1 if x["score"] == 1 else 0 for x in all_scores]) * 100))
precision = float("{:.1f}".format(np.average([x["score"] for x in all_scores if x["has_ans"] == 1]) * 100))
accuracy_easy = float("{:.1f}".format(accuracy_easy * 100))
accuracy_medium = float("{:.1f}".format(accuracy_medium * 100))
accuracy_hard = float("{:.1f}".format(accuracy_hard * 100))
eval_entry = {
"Model Name": model_name,
"Base Model": model_family,
"URL": url,
"Organization": organization,
"Accuracy": accuracy,
"Accuracy (easy)": accuracy_easy,
"Accuracy (medium)": accuracy_medium,
"Accuracy (hard)": accuracy_hard,
"Answer rate": coverage,
"Precision": precision,
"EM": em
}
eval_results["test"] = eval_results["test"].add_item(eval_entry)
eval_results.push_to_hub(RESULTS_DATASET, config_name=YEAR_VERSION, token=TOKEN)
return format_log(
f"Model {model_name} submitted by {organization} successfully.\nPlease wait a few hours and refresh the leaderboard to see your score displayed.")
# Function to refresh the results
def refresh():
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", trust_remote_code=True)
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
eval_dataframe_test = format_dataframe(eval_dataframe_test)
return eval_dataframe_test
# Gradio interface
demo = gr.Blocks()
with demo:
gr.HTML("<h1>AssistantBench</h1>")
gr.Markdown("""
AssistantBench aims to evaluate the ability of web agents to assist with real and time-consuming tasks.
For more information, please check out our paper or the official website.
To download AssistantBench, press [here](https://huggingface.co/datasets/AssistantBench/AssistantBench).
""")
gr.HTML("<h2>AssistantBench Leaderboard</h2>")
with gr.Tab("Results: Test"):
leaderboard_table_test = gr.Dataframe(
value=eval_dataframe_test, datatype=TYPES, interactive=False,
column_widths=["20%"]
)
refresh_button = gr.Button("Refresh")
refresh_button.click(
refresh,
inputs=[],
outputs=[
leaderboard_table_test,
],
)
gr.HTML("<h2>Making a New Submission</h2>")
with gr.Accordion("Submit a new model for evaluation"):
with gr.Row():
gr.Markdown("""
To make a new submission, upload a predictions file. Our scoring function can be found [here](https://huggingface.co/spaces/AssistantBench/leaderboard/blob/main/scorer.py). We support JSONL files with the following format:
```
{"id": "task_id_1", "answer": "Answer 1 from your model"}
{"id": "task_id_2", "answer": "Answer 2 from your model"}
```
""")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model Name")
model_family_textbox = gr.Textbox(label="Base Model")
url_textbox = gr.Textbox(label="URL to Model Information")
with gr.Column():
organization = gr.Textbox(label="Organization")
mail = gr.Textbox(
label="Contact Email (will be stored privately & used if there is an issue with your submission)")
file_output = gr.File()
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
model_family_textbox,
url_textbox,
file_output,
organization,
mail
],
submission_result,
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_text = """@article{yoran-etal-2024-assistantbench,
title={AssistantBench: Can Web Agents Solve Realistic and Time-Consuming Tasks?},
author={Ori Yoran and Samuel Amouyal and Chaitanya Malaviya and Ben Bogin and Ofir Press and Jonathan Berant},
year={2024},
eprint={?},
archivePrefix={arXiv},
primaryClass={cs.CL}
}"""
citation_button = gr.Textbox(
value=citation_text,
label="Citation",
lines=20,
elem_id="citation-button",
show_copy_button=True
)
gr.HTML(
"<p>We would like to thank the GAIA team for sharing the source code for their leaderboard which we used as a template and HuggingFace for hosting the leaderboard.</p>")
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=3600)
scheduler.start()
demo.launch(debug=True)