Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import json
|
|
3 |
import datetime
|
4 |
from email.utils import parseaddr
|
5 |
|
6 |
-
|
7 |
import gradio as gr
|
8 |
import pandas as pd
|
9 |
from datasets import load_dataset
|
@@ -11,7 +10,6 @@ from apscheduler.schedulers.background import BackgroundScheduler
|
|
11 |
from huggingface_hub import HfApi
|
12 |
from content import format_error, format_warning, format_log, TITLE
|
13 |
|
14 |
-
|
15 |
# Placeholder for the question_scorer function
|
16 |
def question_scorer(prediction, gold_answer):
|
17 |
return 1 if prediction == gold_answer else 0
|
@@ -34,7 +32,9 @@ os.makedirs("scored", exist_ok=True)
|
|
34 |
eval_results = load_dataset(RESULTS_DATASET, token=TOKEN, download_mode="force_redownload",
|
35 |
ignore_verifications=True, trust_remote_code=True)
|
36 |
gold_results = load_dataset(DATA_DATASET, token=TOKEN, trust_remote_code=True)
|
|
|
37 |
gold_answers = {split: {row["id"]: row["answer"] for row in gold_results[split]} for split in ["test"]}
|
|
|
38 |
|
39 |
|
40 |
# Function to get dataframe from results
|
@@ -46,8 +46,18 @@ def get_dataframe_from_results(eval_results, split):
|
|
46 |
df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
|
47 |
return df
|
48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
|
|
51 |
|
52 |
|
53 |
# Function to restart the space
|
@@ -55,7 +65,7 @@ def restart_space():
|
|
55 |
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
|
56 |
|
57 |
|
58 |
-
TYPES = ["markdown", "number", "number", "number", "number", "str", "str"]
|
59 |
|
60 |
|
61 |
# Function to add a new evaluation
|
@@ -92,6 +102,10 @@ def add_new_eval(
|
|
92 |
file_path = path_to_file.name
|
93 |
scores = 0
|
94 |
num_questions = 0
|
|
|
|
|
|
|
|
|
95 |
with open(f"scored/{organization}_{model_name}.jsonl", "w") as scored_file:
|
96 |
with open(file_path, 'r') as f:
|
97 |
for ix, line in enumerate(f):
|
@@ -111,6 +125,8 @@ def add_new_eval(
|
|
111 |
f"{task_id} not found in test set. Are you sure you submitted the correct file?")
|
112 |
|
113 |
score = question_scorer(task['answer'], gold_answers["test"][task_id])
|
|
|
|
|
114 |
scored_file.write(
|
115 |
json.dumps({
|
116 |
"id": task_id,
|
@@ -118,8 +134,15 @@ def add_new_eval(
|
|
118 |
"score": score
|
119 |
}) + "\n"
|
120 |
)
|
|
|
121 |
scores += score
|
122 |
num_questions += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
api.upload_file(
|
125 |
repo_id=SUBMISSION_DATASET,
|
@@ -131,14 +154,16 @@ def add_new_eval(
|
|
131 |
|
132 |
eval_entry = {
|
133 |
"Model Name": model_name,
|
134 |
-
"Model
|
135 |
"URL": url,
|
136 |
"Organization": organization,
|
137 |
"Accuracy": scores / num_questions if num_questions > 0 else 0,
|
|
|
|
|
|
|
138 |
"Answer rate": scores / num_questions if num_questions > 0 else 0,
|
139 |
"Precision": scores / num_questions if num_questions > 0 else 0,
|
140 |
-
"EM": scores if num_questions > 0 else 0
|
141 |
-
"Cost": 0, # Placeholder for cost, update with actual value if needed
|
142 |
}
|
143 |
eval_results["test"] = eval_results["test"].add_item(eval_entry)
|
144 |
eval_results.push_to_hub(RESULTS_DATASET, config_name=YEAR_VERSION, token=TOKEN)
|
@@ -152,6 +177,7 @@ def refresh():
|
|
152 |
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload",
|
153 |
ignore_verifications=True, trust_remote_code=True)
|
154 |
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
|
|
155 |
return eval_dataframe_test
|
156 |
|
157 |
|
@@ -185,17 +211,16 @@ with demo:
|
|
185 |
with gr.Accordion("Submit a new model for evaluation"):
|
186 |
with gr.Row():
|
187 |
gr.Markdown("""
|
188 |
-
To make a new submission, upload a predictions file. We support JSONL files with the following format:
|
189 |
```
|
190 |
{"id": "task_id_1", "answer": "Answer 1 from your model"}
|
191 |
{"id": "task_id_2", "answer": "Answer 2 from your model"}
|
192 |
```
|
193 |
-
Our scoring function can be found [here](https://huggingface.co/spaces/AssistantBench/leaderboard/blob/main/scorer.py).
|
194 |
""")
|
195 |
with gr.Row():
|
196 |
with gr.Column():
|
197 |
model_name_textbox = gr.Textbox(label="Model Name")
|
198 |
-
model_family_textbox = gr.Textbox(label="Model
|
199 |
url_textbox = gr.Textbox(label="URL to Model Information")
|
200 |
with gr.Column():
|
201 |
organization = gr.Textbox(label="Organization")
|
@@ -220,11 +245,11 @@ with demo:
|
|
220 |
|
221 |
with gr.Row():
|
222 |
with gr.Accordion("π Citation", open=False):
|
223 |
-
citation_text = """@article{yoran-etal-
|
224 |
title={AssistantBench: Can Web Agents Solve Realistic and Time-Consuming Tasks?},
|
225 |
author={Ori Yoran and Samuel Amouyal and Chaitanya Malaviya and Ben Bogin and Ofir Press and Jonathan Berant},
|
226 |
year={2024},
|
227 |
-
eprint={
|
228 |
archivePrefix={arXiv},
|
229 |
primaryClass={cs.CL}
|
230 |
}"""
|
@@ -237,9 +262,9 @@ with demo:
|
|
237 |
)
|
238 |
|
239 |
gr.HTML(
|
240 |
-
"<p>We would like to thank the GAIA team
|
241 |
|
242 |
scheduler = BackgroundScheduler()
|
243 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
244 |
scheduler.start()
|
245 |
-
demo.launch(debug=True)
|
|
|
3 |
import datetime
|
4 |
from email.utils import parseaddr
|
5 |
|
|
|
6 |
import gradio as gr
|
7 |
import pandas as pd
|
8 |
from datasets import load_dataset
|
|
|
10 |
from huggingface_hub import HfApi
|
11 |
from content import format_error, format_warning, format_log, TITLE
|
12 |
|
|
|
13 |
# Placeholder for the question_scorer function
|
14 |
def question_scorer(prediction, gold_answer):
|
15 |
return 1 if prediction == gold_answer else 0
|
|
|
32 |
eval_results = load_dataset(RESULTS_DATASET, token=TOKEN, download_mode="force_redownload",
|
33 |
ignore_verifications=True, trust_remote_code=True)
|
34 |
gold_results = load_dataset(DATA_DATASET, token=TOKEN, trust_remote_code=True)
|
35 |
+
|
36 |
gold_answers = {split: {row["id"]: row["answer"] for row in gold_results[split]} for split in ["test"]}
|
37 |
+
gold_difficulties = {split: {row["id"]: row["difficulty"] for row in gold_results[split]} for split in ["test"]}
|
38 |
|
39 |
|
40 |
# Function to get dataframe from results
|
|
|
46 |
df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
|
47 |
return df
|
48 |
|
49 |
+
# Update function to format dataframe
|
50 |
+
def format_dataframe(df):
|
51 |
+
df["Accuracy"] = df["Accuracy"].apply(lambda x: f"**{x:.2f}**")
|
52 |
+
if "URL" in df.columns:
|
53 |
+
df["Model Name"] = df.apply(lambda row: f"[{row['Model Name']}]({row['URL']})", axis=1)
|
54 |
+
df = df.drop(columns=["URL"])
|
55 |
+
df = df.rename(columns={"Model Family": "Base Model"})
|
56 |
+
df = df[["Model Name", "Accuracy", "Accuracy (easy)", "Accuracy (medium)", "Accuracy (hard)", "Answer rate", "Precision", "EM", "Base Model", "Organization"]]
|
57 |
+
return df
|
58 |
|
59 |
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
60 |
+
eval_dataframe_test = format_dataframe(eval_dataframe_test)
|
61 |
|
62 |
|
63 |
# Function to restart the space
|
|
|
65 |
api.restart_space(repo_id=LEADERBOARD_PATH, token=TOKEN)
|
66 |
|
67 |
|
68 |
+
TYPES = ["markdown", "markdown", "number", "number", "number", "number", "number", "number", "str", "str"]
|
69 |
|
70 |
|
71 |
# Function to add a new evaluation
|
|
|
102 |
file_path = path_to_file.name
|
103 |
scores = 0
|
104 |
num_questions = 0
|
105 |
+
|
106 |
+
difficulty_scores = {"Easy": 0, "Medium": 0, "Hard": 0}
|
107 |
+
difficulty_counts = {"Easy": 0, "Medium": 0, "Hard": 0}
|
108 |
+
|
109 |
with open(f"scored/{organization}_{model_name}.jsonl", "w") as scored_file:
|
110 |
with open(file_path, 'r') as f:
|
111 |
for ix, line in enumerate(f):
|
|
|
125 |
f"{task_id} not found in test set. Are you sure you submitted the correct file?")
|
126 |
|
127 |
score = question_scorer(task['answer'], gold_answers["test"][task_id])
|
128 |
+
difficulty = gold_difficulties["test"][task_id]
|
129 |
+
|
130 |
scored_file.write(
|
131 |
json.dumps({
|
132 |
"id": task_id,
|
|
|
134 |
"score": score
|
135 |
}) + "\n"
|
136 |
)
|
137 |
+
|
138 |
scores += score
|
139 |
num_questions += 1
|
140 |
+
difficulty_scores[difficulty] += score
|
141 |
+
difficulty_counts[difficulty] += 1
|
142 |
+
|
143 |
+
accuracy_easy = difficulty_scores["Easy"] / difficulty_counts["Easy"] if difficulty_counts["Easy"] > 0 else 0
|
144 |
+
accuracy_medium = difficulty_scores["Medium"] / difficulty_counts["Medium"] if difficulty_counts["Medium"] > 0 else 0
|
145 |
+
accuracy_hard = difficulty_scores["Hard"] / difficulty_counts["Hard"] if difficulty_counts["Hard"] > 0 else 0
|
146 |
|
147 |
api.upload_file(
|
148 |
repo_id=SUBMISSION_DATASET,
|
|
|
154 |
|
155 |
eval_entry = {
|
156 |
"Model Name": model_name,
|
157 |
+
"Base Model": model_family,
|
158 |
"URL": url,
|
159 |
"Organization": organization,
|
160 |
"Accuracy": scores / num_questions if num_questions > 0 else 0,
|
161 |
+
"Accuracy (easy)": accuracy_easy,
|
162 |
+
"Accuracy (medium)": accuracy_medium,
|
163 |
+
"Accuracy (hard)": accuracy_hard,
|
164 |
"Answer rate": scores / num_questions if num_questions > 0 else 0,
|
165 |
"Precision": scores / num_questions if num_questions > 0 else 0,
|
166 |
+
"EM": scores if num_questions > 0 else 0
|
|
|
167 |
}
|
168 |
eval_results["test"] = eval_results["test"].add_item(eval_entry)
|
169 |
eval_results.push_to_hub(RESULTS_DATASET, config_name=YEAR_VERSION, token=TOKEN)
|
|
|
177 |
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload",
|
178 |
ignore_verifications=True, trust_remote_code=True)
|
179 |
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
180 |
+
eval_dataframe_test = format_dataframe(eval_dataframe_test)
|
181 |
return eval_dataframe_test
|
182 |
|
183 |
|
|
|
211 |
with gr.Accordion("Submit a new model for evaluation"):
|
212 |
with gr.Row():
|
213 |
gr.Markdown("""
|
214 |
+
To make a new submission, upload a predictions file. Our scoring function can be found [here](https://huggingface.co/spaces/AssistantBench/leaderboard/blob/main/scorer.py). We support JSONL files with the following format:
|
215 |
```
|
216 |
{"id": "task_id_1", "answer": "Answer 1 from your model"}
|
217 |
{"id": "task_id_2", "answer": "Answer 2 from your model"}
|
218 |
```
|
|
|
219 |
""")
|
220 |
with gr.Row():
|
221 |
with gr.Column():
|
222 |
model_name_textbox = gr.Textbox(label="Model Name")
|
223 |
+
model_family_textbox = gr.Textbox(label="Base Model")
|
224 |
url_textbox = gr.Textbox(label="URL to Model Information")
|
225 |
with gr.Column():
|
226 |
organization = gr.Textbox(label="Organization")
|
|
|
245 |
|
246 |
with gr.Row():
|
247 |
with gr.Accordion("π Citation", open=False):
|
248 |
+
citation_text = """@article{yoran-etal-2024-assistantbench,
|
249 |
title={AssistantBench: Can Web Agents Solve Realistic and Time-Consuming Tasks?},
|
250 |
author={Ori Yoran and Samuel Amouyal and Chaitanya Malaviya and Ben Bogin and Ofir Press and Jonathan Berant},
|
251 |
year={2024},
|
252 |
+
eprint={?},
|
253 |
archivePrefix={arXiv},
|
254 |
primaryClass={cs.CL}
|
255 |
}"""
|
|
|
262 |
)
|
263 |
|
264 |
gr.HTML(
|
265 |
+
"<p>We would like to thank the GAIA team for sharing the source code for their leaderboard which we used as a template and HuggingFace for hosting the leaderboard.</p>")
|
266 |
|
267 |
scheduler = BackgroundScheduler()
|
268 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
269 |
scheduler.start()
|
270 |
+
demo.launch(debug=True)
|