|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
from statsmodels.tsa.arima.model import ARIMA |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
@st.cache |
|
def load_data(): |
|
return pd.read_excel('./gcp_usage_data_2024.xlsx') |
|
|
|
df = load_data() |
|
|
|
|
|
service_costs = df.groupby('Service Description')['Cost ($)'].sum() |
|
|
|
|
|
average_cost = service_costs.mean() |
|
|
|
|
|
services_above_average = service_costs[service_costs > average_cost].sort_values(ascending=False) |
|
|
|
|
|
def forecast_costs(service_name, steps=3): |
|
service_data = df[df['Service Description'] == service_name].copy() |
|
service_data['Date'] = pd.to_datetime(service_data['Date']) |
|
service_data.set_index('Date', inplace=True) |
|
monthly_costs = service_data['Cost ($)'].resample('M').sum() |
|
model = ARIMA(monthly_costs, order=(1, 1, 1)) |
|
model_fit = model.fit() |
|
forecast = model_fit.forecast(steps=steps) |
|
return monthly_costs, forecast |
|
|
|
|
|
st.title('GCP Cost Analysis and Optimization') |
|
|
|
|
|
if st.checkbox('Show Raw Data'): |
|
st.write(df) |
|
|
|
|
|
st.write("### Aggregated Costs by Service") |
|
st.dataframe(service_costs.sort_values(ascending=False)) |
|
|
|
|
|
st.write(f"### Average Cost: ${average_cost:.2f}") |
|
st.write("### Services with Costs Greater Than Average:") |
|
st.dataframe(services_above_average) |
|
|
|
|
|
st.write("### Cost Forecasting") |
|
service_name = st.selectbox('Select a Service for Forecasting', df['Service Description'].unique()) |
|
if st.button('Forecast Costs'): |
|
monthly_costs, forecast = forecast_costs(service_name) |
|
|
|
st.write("### Forecasted Costs") |
|
st.write(forecast) |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
ax.plot(monthly_costs, label='Observed Costs') |
|
ax.plot(pd.date_range(start=monthly_costs.index[-1], periods=len(forecast) + 1, freq='M')[1:], forecast, label='Forecast', color='red') |
|
ax.set_title('Monthly Cost Forecast') |
|
ax.set_xlabel('Date') |
|
ax.set_ylabel('Cost ($)') |
|
ax.legend() |
|
st.pyplot(fig) |
|
|
|
|
|
st.write("### Cost Optimization Analysis") |
|
optimization_factor = st.slider('Optimization Factor (%)', min_value=0, max_value=100, value=25) |
|
df['Optimized Cost ($)'] = df['Cost ($)'] * (1 - optimization_factor / 100) |
|
|
|
total_cost_before = df['Cost ($)'].sum() |
|
total_cost_after = df['Optimized Cost ($)'].sum() |
|
cost_change_percentage = ((total_cost_before - total_cost_after) / total_cost_before) * 100 |
|
dollar_saving = total_cost_before - total_cost_after |
|
|
|
st.write(f"Total Cost Before Optimization: ${total_cost_before:.2f}") |
|
st.write(f"Total Cost After Optimization: ${total_cost_after:.2f}") |
|
st.write(f"Percentage Change in Cost: {cost_change_percentage:.2f}%") |
|
st.write(f"Dollar Saving: ${dollar_saving:.2f}") |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 6)) |
|
services = df['Service Description'].unique() |
|
costs_before = df.groupby('Service Description')['Cost ($)'].sum() |
|
costs_after = df.groupby('Service Description')['Optimized Cost ($)'].sum() |
|
|
|
ax.barh(services, costs_before, label='Before Optimization', alpha=0.7) |
|
ax.barh(services, costs_after, label='After Optimization', alpha=0.7) |
|
ax.set_title('Cost Before and After Optimization') |
|
ax.set_xlabel('Cost ($)') |
|
ax.legend() |
|
st.pyplot(fig) |
|
|
|
|
|
|