File size: 7,697 Bytes
fe6327d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import math
from typing import Any
from einops import rearrange
import torch
from diffusers.models.attention_processor import Attention


# flash attention forwards and backwards

# https://arxiv.org/abs/2205.14135

EPSILON = 1e-6


class FlashAttentionFunction(torch.autograd.function.Function):
    @staticmethod
    @torch.no_grad()
    def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
        """Algorithm 2 in the paper"""

        device = q.device
        dtype = q.dtype
        max_neg_value = -torch.finfo(q.dtype).max
        qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)

        o = torch.zeros_like(q)
        all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
        all_row_maxes = torch.full(
            (*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device
        )

        scale = q.shape[-1] ** -0.5

        if mask is None:
            mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
        else:
            mask = rearrange(mask, "b n -> b 1 1 n")
            mask = mask.split(q_bucket_size, dim=-1)

        row_splits = zip(
            q.split(q_bucket_size, dim=-2),
            o.split(q_bucket_size, dim=-2),
            mask,
            all_row_sums.split(q_bucket_size, dim=-2),
            all_row_maxes.split(q_bucket_size, dim=-2),
        )

        for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
            q_start_index = ind * q_bucket_size - qk_len_diff

            col_splits = zip(
                k.split(k_bucket_size, dim=-2),
                v.split(k_bucket_size, dim=-2),
            )

            for k_ind, (kc, vc) in enumerate(col_splits):
                k_start_index = k_ind * k_bucket_size

                attn_weights = (
                    torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
                )

                if row_mask is not None:
                    attn_weights.masked_fill_(~row_mask, max_neg_value)

                if causal and q_start_index < (k_start_index + k_bucket_size - 1):
                    causal_mask = torch.ones(
                        (qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
                    ).triu(q_start_index - k_start_index + 1)
                    attn_weights.masked_fill_(causal_mask, max_neg_value)

                block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
                attn_weights -= block_row_maxes
                exp_weights = torch.exp(attn_weights)

                if row_mask is not None:
                    exp_weights.masked_fill_(~row_mask, 0.0)

                block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(
                    min=EPSILON
                )

                new_row_maxes = torch.maximum(block_row_maxes, row_maxes)

                exp_values = torch.einsum(
                    "... i j, ... j d -> ... i d", exp_weights, vc
                )

                exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
                exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)

                new_row_sums = (
                    exp_row_max_diff * row_sums
                    + exp_block_row_max_diff * block_row_sums
                )

                oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_(
                    (exp_block_row_max_diff / new_row_sums) * exp_values
                )

                row_maxes.copy_(new_row_maxes)
                row_sums.copy_(new_row_sums)

        ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
        ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)

        return o

    @staticmethod
    @torch.no_grad()
    def backward(ctx, do):
        """Algorithm 4 in the paper"""

        causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
        q, k, v, o, l, m = ctx.saved_tensors

        device = q.device

        max_neg_value = -torch.finfo(q.dtype).max
        qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)

        dq = torch.zeros_like(q)
        dk = torch.zeros_like(k)
        dv = torch.zeros_like(v)

        row_splits = zip(
            q.split(q_bucket_size, dim=-2),
            o.split(q_bucket_size, dim=-2),
            do.split(q_bucket_size, dim=-2),
            mask,
            l.split(q_bucket_size, dim=-2),
            m.split(q_bucket_size, dim=-2),
            dq.split(q_bucket_size, dim=-2),
        )

        for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
            q_start_index = ind * q_bucket_size - qk_len_diff

            col_splits = zip(
                k.split(k_bucket_size, dim=-2),
                v.split(k_bucket_size, dim=-2),
                dk.split(k_bucket_size, dim=-2),
                dv.split(k_bucket_size, dim=-2),
            )

            for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
                k_start_index = k_ind * k_bucket_size

                attn_weights = (
                    torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale
                )

                if causal and q_start_index < (k_start_index + k_bucket_size - 1):
                    causal_mask = torch.ones(
                        (qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device
                    ).triu(q_start_index - k_start_index + 1)
                    attn_weights.masked_fill_(causal_mask, max_neg_value)

                exp_attn_weights = torch.exp(attn_weights - mc)

                if row_mask is not None:
                    exp_attn_weights.masked_fill_(~row_mask, 0.0)

                p = exp_attn_weights / lc

                dv_chunk = torch.einsum("... i j, ... i d -> ... j d", p, doc)
                dp = torch.einsum("... i d, ... j d -> ... i j", doc, vc)

                D = (doc * oc).sum(dim=-1, keepdims=True)
                ds = p * scale * (dp - D)

                dq_chunk = torch.einsum("... i j, ... j d -> ... i d", ds, kc)
                dk_chunk = torch.einsum("... i j, ... i d -> ... j d", ds, qc)

                dqc.add_(dq_chunk)
                dkc.add_(dk_chunk)
                dvc.add_(dv_chunk)

        return dq, dk, dv, None, None, None, None


class FlashAttnProcessor:
    def __call__(
        self,
        attn: Attention,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
    ) -> Any:
        q_bucket_size = 512
        k_bucket_size = 1024

        h = attn.heads
        q = attn.to_q(hidden_states)

        encoder_hidden_states = (
            encoder_hidden_states
            if encoder_hidden_states is not None
            else hidden_states
        )
        encoder_hidden_states = encoder_hidden_states.to(hidden_states.dtype)

        if hasattr(attn, "hypernetwork") and attn.hypernetwork is not None:
            context_k, context_v = attn.hypernetwork.forward(
                hidden_states, encoder_hidden_states
            )
            context_k = context_k.to(hidden_states.dtype)
            context_v = context_v.to(hidden_states.dtype)
        else:
            context_k = encoder_hidden_states
            context_v = encoder_hidden_states

        k = attn.to_k(context_k)
        v = attn.to_v(context_v)
        del encoder_hidden_states, hidden_states

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))

        out = FlashAttentionFunction.apply(
            q, k, v, attention_mask, False, q_bucket_size, k_bucket_size
        )

        out = rearrange(out, "b h n d -> b n (h d)")

        out = attn.to_out[0](out)
        out = attn.to_out[1](out)
        return out