File size: 10,381 Bytes
fe6327d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import gradio as gr
from .common_gui import get_folder_path, get_any_file_path
class AdvancedTraining:
def __init__(
self,
headless=False,
finetuning: bool = False
):
self.headless = headless
self.finetuning = finetuning
def noise_offset_type_change(noise_offset_type):
if noise_offset_type == 'Original':
return (gr.Group.update(visible=True), gr.Group.update(visible=False))
else:
return (gr.Group.update(visible=False), gr.Group.update(visible=True))
with gr.Row(visible=not finetuning):
self.no_token_padding = gr.Checkbox(
label='No token padding', value=False
)
self.gradient_accumulation_steps = gr.Number(
label='Gradient accumulate steps', value='1'
)
self.weighted_captions = gr.Checkbox(
label='Weighted captions', value=False
)
with gr.Row(visible=not finetuning):
self.prior_loss_weight = gr.Number(
label='Prior loss weight', value=1.0
)
self.vae = gr.Textbox(
label='VAE',
placeholder='(Optiona) path to checkpoint of vae to replace for training',
)
self.vae_button = gr.Button(
'📂', elem_id='open_folder_small', visible=(not headless)
)
self.vae_button.click(
get_any_file_path,
outputs=self.vae,
show_progress=False,
)
with gr.Row(visible=not finetuning):
self.lr_scheduler_num_cycles = gr.Textbox(
label='LR number of cycles',
placeholder='(Optional) For Cosine with restart and polynomial only',
)
self.lr_scheduler_power = gr.Textbox(
label='LR power',
placeholder='(Optional) For Cosine with restart and polynomial only',
)
with gr.Row():
self.additional_parameters = gr.Textbox(
label='Additional parameters',
placeholder='(Optional) Use to provide additional parameters not handled by the GUI. Eg: --some_parameters "value"',
)
with gr.Row():
self.save_every_n_steps = gr.Number(
label='Save every N steps',
value=0,
precision=0,
info='(Optional) The model is saved every specified steps',
)
self.save_last_n_steps = gr.Number(
label='Save last N steps',
value=0,
precision=0,
info='(Optional) Save only the specified number of models (old models will be deleted)',
)
self.save_last_n_steps_state = gr.Number(
label='Save last N states',
value=0,
precision=0,
info='(Optional) Save only the specified number of states (old models will be deleted)',
)
with gr.Row():
self.keep_tokens = gr.Slider(
label='Keep n tokens', value='0', minimum=0, maximum=32, step=1
)
self.clip_skip = gr.Slider(
label='Clip skip', value='1', minimum=1, maximum=12, step=1
)
self.max_token_length = gr.Dropdown(
label='Max Token Length',
choices=[
'75',
'150',
'225',
],
value='75',
)
self.full_fp16 = gr.Checkbox(
label='Full fp16 training (experimental)', value=False
)
with gr.Row():
self.gradient_checkpointing = gr.Checkbox(
label='Gradient checkpointing', value=False
)
self.shuffle_caption = gr.Checkbox(label='Shuffle caption', value=False)
self.persistent_data_loader_workers = gr.Checkbox(
label='Persistent data loader', value=False
)
self.mem_eff_attn = gr.Checkbox(
label='Memory efficient attention', value=False
)
with gr.Row():
# This use_8bit_adam element should be removed in a future release as it is no longer used
# use_8bit_adam = gr.Checkbox(
# label='Use 8bit adam', value=False, visible=False
# )
self.xformers = gr.Checkbox(label='Use xformers', value=True)
self.color_aug = gr.Checkbox(label='Color augmentation', value=False)
self.flip_aug = gr.Checkbox(label='Flip augmentation', value=False)
self.min_snr_gamma = gr.Slider(
label='Min SNR gamma', value=0, minimum=0, maximum=20, step=1
)
with gr.Row():
self.bucket_no_upscale = gr.Checkbox(
label="Don't upscale bucket resolution", value=True
)
self.bucket_reso_steps = gr.Slider(
label='Bucket resolution steps', value=64, minimum=1, maximum=128
)
self.random_crop = gr.Checkbox(
label='Random crop instead of center crop', value=False
)
with gr.Row():
self.min_timestep = gr.Slider(
label='Min Timestep',
value=0,
step=1,
minimum=0,
maximum=1000,
info='Values greater than 0 will make the model more img2img focussed. 0 = image only'
)
self.max_timestep = gr.Slider(
label='Max Timestep',
value=1000,
step=1,
minimum=0,
maximum=1000,
info='Values lower than 1000 will make the model more img2img focussed. 1000 = noise only',
)
with gr.Row():
self.noise_offset_type = gr.Dropdown(
label='Noise offset type',
choices=[
'Original',
'Multires',
],
value='Original',
)
with gr.Row(visible=True) as self.noise_offset_original:
self.noise_offset = gr.Slider(
label='Noise offset',
value=0,
minimum=0,
maximum=1,
step=0.01,
info='recommended values are 0.05 - 0.15',
)
self.adaptive_noise_scale = gr.Slider(
label='Adaptive noise scale',
value=0,
minimum=-1,
maximum=1,
step=0.001,
info='(Experimental, Optional) Since the latent is close to a normal distribution, it may be a good idea to specify a value around 1/10 the noise offset.',
)
with gr.Row(visible=False) as self.noise_offset_multires:
self.multires_noise_iterations = gr.Slider(
label='Multires noise iterations',
value=0,
minimum=0,
maximum=64,
step=1,
info='enable multires noise (recommended values are 6-10)',
)
self.multires_noise_discount = gr.Slider(
label='Multires noise discount',
value=0,
minimum=0,
maximum=1,
step=0.01,
info='recommended values are 0.8. For LoRAs with small datasets, 0.1-0.3',
)
self.noise_offset_type.change(
noise_offset_type_change,
inputs=[self.noise_offset_type],
outputs=[self.noise_offset_original, self.noise_offset_multires]
)
with gr.Row():
self.caption_dropout_every_n_epochs = gr.Number(
label='Dropout caption every n epochs', value=0
)
self.caption_dropout_rate = gr.Slider(
label='Rate of caption dropout', value=0, minimum=0, maximum=1
)
self.vae_batch_size = gr.Slider(
label='VAE batch size', minimum=0, maximum=32, value=0, step=1
)
with gr.Row():
self.save_state = gr.Checkbox(label='Save training state', value=False)
self.resume = gr.Textbox(
label='Resume from saved training state',
placeholder='path to "last-state" state folder to resume from',
)
self.resume_button = gr.Button(
'📂', elem_id='open_folder_small', visible=(not headless)
)
self.resume_button.click(
get_folder_path,
outputs=self.resume,
show_progress=False,
)
self.max_train_epochs = gr.Textbox(
label='Max train epoch',
placeholder='(Optional) Override number of epoch',
)
self.max_data_loader_n_workers = gr.Textbox(
label='Max num workers for DataLoader',
placeholder='(Optional) Override number of epoch. Default: 8',
value='0',
)
with gr.Row():
self.wandb_api_key = gr.Textbox(
label='WANDB API Key',
value='',
placeholder='(Optional)',
info='Users can obtain and/or generate an api key in the their user settings on the website: https://wandb.ai/login',
)
self.use_wandb = gr.Checkbox(
label='WANDB Logging',
value=False,
info='If unchecked, tensorboard will be used as the default for logging.',
)
self.scale_v_pred_loss_like_noise_pred = gr.Checkbox(
label='Scale v prediction loss',
value=False,
info='Only for SD v2 models. By scaling the loss according to the time step, the weights of global noise prediction and local noise prediction become the same, and the improvement of details may be expected.',
)
|