File size: 12,305 Bytes
fe6327d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
# 外部から簡単にupscalerを呼ぶためのスクリプト
# 単体で動くようにモデル定義も含めている
import argparse
import glob
import os
import cv2
from diffusers import AutoencoderKL
from typing import Dict, List
import numpy as np
import torch
from torch import nn
from tqdm import tqdm
from PIL import Image
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels=None, kernel_size=3, stride=1, padding=1):
super(ResidualBlock, self).__init__()
if out_channels is None:
out_channels = in_channels
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.relu2 = nn.ReLU(inplace=True) # このReLUはresidualに足す前にかけるほうがいいかも
# initialize weights
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu1(out)
out = self.conv2(out)
out = self.bn2(out)
out += residual
out = self.relu2(out)
return out
class Upscaler(nn.Module):
def __init__(self):
super(Upscaler, self).__init__()
# define layers
# latent has 4 channels
self.conv1 = nn.Conv2d(4, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
self.bn1 = nn.BatchNorm2d(128)
self.relu1 = nn.ReLU(inplace=True)
# resblocks
# 数の暴力で20個:次元数を増やすよりもブロックを増やしたほうがreceptive fieldが広がるはずだぞ
self.resblock1 = ResidualBlock(128)
self.resblock2 = ResidualBlock(128)
self.resblock3 = ResidualBlock(128)
self.resblock4 = ResidualBlock(128)
self.resblock5 = ResidualBlock(128)
self.resblock6 = ResidualBlock(128)
self.resblock7 = ResidualBlock(128)
self.resblock8 = ResidualBlock(128)
self.resblock9 = ResidualBlock(128)
self.resblock10 = ResidualBlock(128)
self.resblock11 = ResidualBlock(128)
self.resblock12 = ResidualBlock(128)
self.resblock13 = ResidualBlock(128)
self.resblock14 = ResidualBlock(128)
self.resblock15 = ResidualBlock(128)
self.resblock16 = ResidualBlock(128)
self.resblock17 = ResidualBlock(128)
self.resblock18 = ResidualBlock(128)
self.resblock19 = ResidualBlock(128)
self.resblock20 = ResidualBlock(128)
# last convs
self.conv2 = nn.Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU(inplace=True)
self.conv3 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
self.bn3 = nn.BatchNorm2d(64)
self.relu3 = nn.ReLU(inplace=True)
# final conv: output 4 channels
self.conv_final = nn.Conv2d(64, 4, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0))
# initialize weights
self._initialize_weights()
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
if m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.constant_(m.bias, 0)
# initialize final conv weights to 0: 流行りのzero conv
nn.init.constant_(self.conv_final.weight, 0)
def forward(self, x):
inp = x
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
# いくつかのresblockを通した後に、residualを足すことで精度向上と学習速度向上が見込めるはず
residual = x
x = self.resblock1(x)
x = self.resblock2(x)
x = self.resblock3(x)
x = self.resblock4(x)
x = x + residual
residual = x
x = self.resblock5(x)
x = self.resblock6(x)
x = self.resblock7(x)
x = self.resblock8(x)
x = x + residual
residual = x
x = self.resblock9(x)
x = self.resblock10(x)
x = self.resblock11(x)
x = self.resblock12(x)
x = x + residual
residual = x
x = self.resblock13(x)
x = self.resblock14(x)
x = self.resblock15(x)
x = self.resblock16(x)
x = x + residual
residual = x
x = self.resblock17(x)
x = self.resblock18(x)
x = self.resblock19(x)
x = self.resblock20(x)
x = x + residual
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.conv3(x)
x = self.bn3(x)
# ここにreluを入れないほうがいい気がする
x = self.conv_final(x)
# network estimates the difference between the input and the output
x = x + inp
return x
def support_latents(self) -> bool:
return False
def upscale(
self,
vae: AutoencoderKL,
lowreso_images: List[Image.Image],
lowreso_latents: torch.Tensor,
dtype: torch.dtype,
width: int,
height: int,
batch_size: int = 1,
vae_batch_size: int = 1,
):
# assertion
assert lowreso_images is not None, "Upscaler requires lowreso image"
# make upsampled image with lanczos4
upsampled_images = []
for lowreso_image in lowreso_images:
upsampled_image = np.array(lowreso_image.resize((width, height), Image.LANCZOS))
upsampled_images.append(upsampled_image)
# convert to tensor: this tensor is too large to be converted to cuda
upsampled_images = [torch.from_numpy(upsampled_image).permute(2, 0, 1).float() for upsampled_image in upsampled_images]
upsampled_images = torch.stack(upsampled_images, dim=0)
upsampled_images = upsampled_images.to(dtype)
# normalize to [-1, 1]
upsampled_images = upsampled_images / 127.5 - 1.0
# convert upsample images to latents with batch size
# print("Encoding upsampled (LANCZOS4) images...")
upsampled_latents = []
for i in tqdm(range(0, upsampled_images.shape[0], vae_batch_size)):
batch = upsampled_images[i : i + vae_batch_size].to(vae.device)
with torch.no_grad():
batch = vae.encode(batch).latent_dist.sample()
upsampled_latents.append(batch)
upsampled_latents = torch.cat(upsampled_latents, dim=0)
# upscale (refine) latents with this model with batch size
print("Upscaling latents...")
upscaled_latents = []
for i in range(0, upsampled_latents.shape[0], batch_size):
with torch.no_grad():
upscaled_latents.append(self.forward(upsampled_latents[i : i + batch_size]))
upscaled_latents = torch.cat(upscaled_latents, dim=0)
return upscaled_latents * 0.18215
# external interface: returns a model
def create_upscaler(**kwargs):
weights = kwargs["weights"]
model = Upscaler()
print(f"Loading weights from {weights}...")
if os.path.splitext(weights)[1] == ".safetensors":
from safetensors.torch import load_file
sd = load_file(weights)
else:
sd = torch.load(weights, map_location=torch.device("cpu"))
model.load_state_dict(sd)
return model
# another interface: upscale images with a model for given images from command line
def upscale_images(args: argparse.Namespace):
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
us_dtype = torch.float16 # TODO: support fp32/bf16
os.makedirs(args.output_dir, exist_ok=True)
# load VAE with Diffusers
assert args.vae_path is not None, "VAE path is required"
print(f"Loading VAE from {args.vae_path}...")
vae = AutoencoderKL.from_pretrained(args.vae_path, subfolder="vae")
vae.to(DEVICE, dtype=us_dtype)
# prepare model
print("Preparing model...")
upscaler: Upscaler = create_upscaler(weights=args.weights)
# print("Loading weights from", args.weights)
# upscaler.load_state_dict(torch.load(args.weights))
upscaler.eval()
upscaler.to(DEVICE, dtype=us_dtype)
# load images
image_paths = glob.glob(args.image_pattern)
images = []
for image_path in image_paths:
image = Image.open(image_path)
image = image.convert("RGB")
# make divisible by 8
width = image.width
height = image.height
if width % 8 != 0:
width = width - (width % 8)
if height % 8 != 0:
height = height - (height % 8)
if width != image.width or height != image.height:
image = image.crop((0, 0, width, height))
images.append(image)
# debug output
if args.debug:
for image, image_path in zip(images, image_paths):
image_debug = image.resize((image.width * 2, image.height * 2), Image.LANCZOS)
basename = os.path.basename(image_path)
basename_wo_ext, ext = os.path.splitext(basename)
dest_file_name = os.path.join(args.output_dir, f"{basename_wo_ext}_lanczos4{ext}")
image_debug.save(dest_file_name)
# upscale
print("Upscaling...")
upscaled_latents = upscaler.upscale(
vae, images, None, us_dtype, width * 2, height * 2, batch_size=args.batch_size, vae_batch_size=args.vae_batch_size
)
upscaled_latents /= 0.18215
# decode with batch
print("Decoding...")
upscaled_images = []
for i in tqdm(range(0, upscaled_latents.shape[0], args.vae_batch_size)):
with torch.no_grad():
batch = vae.decode(upscaled_latents[i : i + args.vae_batch_size]).sample
batch = batch.to("cpu")
upscaled_images.append(batch)
upscaled_images = torch.cat(upscaled_images, dim=0)
# tensor to numpy
upscaled_images = upscaled_images.permute(0, 2, 3, 1).numpy()
upscaled_images = (upscaled_images + 1.0) * 127.5
upscaled_images = upscaled_images.clip(0, 255).astype(np.uint8)
upscaled_images = upscaled_images[..., ::-1]
# save images
for i, image in enumerate(upscaled_images):
basename = os.path.basename(image_paths[i])
basename_wo_ext, ext = os.path.splitext(basename)
dest_file_name = os.path.join(args.output_dir, f"{basename_wo_ext}_upscaled{ext}")
cv2.imwrite(dest_file_name, image)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--vae_path", type=str, default=None, help="VAE path")
parser.add_argument("--weights", type=str, default=None, help="Weights path")
parser.add_argument("--image_pattern", type=str, default=None, help="Image pattern")
parser.add_argument("--output_dir", type=str, default=".", help="Output directory")
parser.add_argument("--batch_size", type=int, default=4, help="Batch size")
parser.add_argument("--vae_batch_size", type=int, default=1, help="VAE batch size")
parser.add_argument("--debug", action="store_true", help="Debug mode")
args = parser.parse_args()
upscale_images(args)
|