File size: 12,305 Bytes
fe6327d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# 外部から簡単にupscalerを呼ぶためのスクリプト
# 単体で動くようにモデル定義も含めている

import argparse
import glob
import os
import cv2
from diffusers import AutoencoderKL

from typing import Dict, List
import numpy as np

import torch
from torch import nn
from tqdm import tqdm
from PIL import Image


class ResidualBlock(nn.Module):
    def __init__(self, in_channels, out_channels=None, kernel_size=3, stride=1, padding=1):
        super(ResidualBlock, self).__init__()

        if out_channels is None:
            out_channels = in_channels

        self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu1 = nn.ReLU(inplace=True)

        self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size, stride, padding, bias=False)
        self.bn2 = nn.BatchNorm2d(out_channels)

        self.relu2 = nn.ReLU(inplace=True)  # このReLUはresidualに足す前にかけるほうがいいかも

        # initialize weights
        self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu1(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out += residual

        out = self.relu2(out)

        return out


class Upscaler(nn.Module):
    def __init__(self):
        super(Upscaler, self).__init__()

        # define layers
        # latent has 4 channels

        self.conv1 = nn.Conv2d(4, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        self.bn1 = nn.BatchNorm2d(128)
        self.relu1 = nn.ReLU(inplace=True)

        # resblocks
        # 数の暴力で20個:次元数を増やすよりもブロックを増やしたほうがreceptive fieldが広がるはずだぞ
        self.resblock1 = ResidualBlock(128)
        self.resblock2 = ResidualBlock(128)
        self.resblock3 = ResidualBlock(128)
        self.resblock4 = ResidualBlock(128)
        self.resblock5 = ResidualBlock(128)
        self.resblock6 = ResidualBlock(128)
        self.resblock7 = ResidualBlock(128)
        self.resblock8 = ResidualBlock(128)
        self.resblock9 = ResidualBlock(128)
        self.resblock10 = ResidualBlock(128)
        self.resblock11 = ResidualBlock(128)
        self.resblock12 = ResidualBlock(128)
        self.resblock13 = ResidualBlock(128)
        self.resblock14 = ResidualBlock(128)
        self.resblock15 = ResidualBlock(128)
        self.resblock16 = ResidualBlock(128)
        self.resblock17 = ResidualBlock(128)
        self.resblock18 = ResidualBlock(128)
        self.resblock19 = ResidualBlock(128)
        self.resblock20 = ResidualBlock(128)

        # last convs
        self.conv2 = nn.Conv2d(128, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        self.bn2 = nn.BatchNorm2d(64)
        self.relu2 = nn.ReLU(inplace=True)

        self.conv3 = nn.Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
        self.bn3 = nn.BatchNorm2d(64)
        self.relu3 = nn.ReLU(inplace=True)

        # final conv: output 4 channels
        self.conv_final = nn.Conv2d(64, 4, kernel_size=(1, 1), stride=(1, 1), padding=(0, 0))

        # initialize weights
        self._initialize_weights()

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)

        # initialize final conv weights to 0: 流行りのzero conv
        nn.init.constant_(self.conv_final.weight, 0)

    def forward(self, x):
        inp = x

        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu1(x)

        # いくつかのresblockを通した後に、residualを足すことで精度向上と学習速度向上が見込めるはず
        residual = x
        x = self.resblock1(x)
        x = self.resblock2(x)
        x = self.resblock3(x)
        x = self.resblock4(x)
        x = x + residual
        residual = x
        x = self.resblock5(x)
        x = self.resblock6(x)
        x = self.resblock7(x)
        x = self.resblock8(x)
        x = x + residual
        residual = x
        x = self.resblock9(x)
        x = self.resblock10(x)
        x = self.resblock11(x)
        x = self.resblock12(x)
        x = x + residual
        residual = x
        x = self.resblock13(x)
        x = self.resblock14(x)
        x = self.resblock15(x)
        x = self.resblock16(x)
        x = x + residual
        residual = x
        x = self.resblock17(x)
        x = self.resblock18(x)
        x = self.resblock19(x)
        x = self.resblock20(x)
        x = x + residual

        x = self.conv2(x)
        x = self.bn2(x)
        x = self.relu2(x)
        x = self.conv3(x)
        x = self.bn3(x)

        # ここにreluを入れないほうがいい気がする

        x = self.conv_final(x)

        # network estimates the difference between the input and the output
        x = x + inp

        return x

    def support_latents(self) -> bool:
        return False

    def upscale(
        self,
        vae: AutoencoderKL,
        lowreso_images: List[Image.Image],
        lowreso_latents: torch.Tensor,
        dtype: torch.dtype,
        width: int,
        height: int,
        batch_size: int = 1,
        vae_batch_size: int = 1,
    ):
        # assertion
        assert lowreso_images is not None, "Upscaler requires lowreso image"

        # make upsampled image with lanczos4
        upsampled_images = []
        for lowreso_image in lowreso_images:
            upsampled_image = np.array(lowreso_image.resize((width, height), Image.LANCZOS))
            upsampled_images.append(upsampled_image)

        # convert to tensor: this tensor is too large to be converted to cuda
        upsampled_images = [torch.from_numpy(upsampled_image).permute(2, 0, 1).float() for upsampled_image in upsampled_images]
        upsampled_images = torch.stack(upsampled_images, dim=0)
        upsampled_images = upsampled_images.to(dtype)

        # normalize to [-1, 1]
        upsampled_images = upsampled_images / 127.5 - 1.0

        # convert upsample images to latents with batch size
        # print("Encoding upsampled (LANCZOS4) images...")
        upsampled_latents = []
        for i in tqdm(range(0, upsampled_images.shape[0], vae_batch_size)):
            batch = upsampled_images[i : i + vae_batch_size].to(vae.device)
            with torch.no_grad():
                batch = vae.encode(batch).latent_dist.sample()
            upsampled_latents.append(batch)

        upsampled_latents = torch.cat(upsampled_latents, dim=0)

        # upscale (refine) latents with this model with batch size
        print("Upscaling latents...")
        upscaled_latents = []
        for i in range(0, upsampled_latents.shape[0], batch_size):
            with torch.no_grad():
                upscaled_latents.append(self.forward(upsampled_latents[i : i + batch_size]))
        upscaled_latents = torch.cat(upscaled_latents, dim=0)

        return upscaled_latents * 0.18215


# external interface: returns a model
def create_upscaler(**kwargs):
    weights = kwargs["weights"]
    model = Upscaler()

    print(f"Loading weights from {weights}...")
    if os.path.splitext(weights)[1] == ".safetensors":
        from safetensors.torch import load_file

        sd = load_file(weights)
    else:
        sd = torch.load(weights, map_location=torch.device("cpu"))
    model.load_state_dict(sd)
    return model


# another interface: upscale images with a model for given images from command line
def upscale_images(args: argparse.Namespace):
    DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    us_dtype = torch.float16  # TODO: support fp32/bf16
    os.makedirs(args.output_dir, exist_ok=True)

    # load VAE with Diffusers
    assert args.vae_path is not None, "VAE path is required"
    print(f"Loading VAE from {args.vae_path}...")
    vae = AutoencoderKL.from_pretrained(args.vae_path, subfolder="vae")
    vae.to(DEVICE, dtype=us_dtype)

    # prepare model
    print("Preparing model...")
    upscaler: Upscaler = create_upscaler(weights=args.weights)
    # print("Loading weights from", args.weights)
    # upscaler.load_state_dict(torch.load(args.weights))
    upscaler.eval()
    upscaler.to(DEVICE, dtype=us_dtype)

    # load images
    image_paths = glob.glob(args.image_pattern)
    images = []
    for image_path in image_paths:
        image = Image.open(image_path)
        image = image.convert("RGB")

        # make divisible by 8
        width = image.width
        height = image.height
        if width % 8 != 0:
            width = width - (width % 8)
        if height % 8 != 0:
            height = height - (height % 8)
        if width != image.width or height != image.height:
            image = image.crop((0, 0, width, height))

        images.append(image)

    # debug output
    if args.debug:
        for image, image_path in zip(images, image_paths):
            image_debug = image.resize((image.width * 2, image.height * 2), Image.LANCZOS)

            basename = os.path.basename(image_path)
            basename_wo_ext, ext = os.path.splitext(basename)
            dest_file_name = os.path.join(args.output_dir, f"{basename_wo_ext}_lanczos4{ext}")
            image_debug.save(dest_file_name)

    # upscale
    print("Upscaling...")
    upscaled_latents = upscaler.upscale(
        vae, images, None, us_dtype, width * 2, height * 2, batch_size=args.batch_size, vae_batch_size=args.vae_batch_size
    )
    upscaled_latents /= 0.18215

    # decode with batch
    print("Decoding...")
    upscaled_images = []
    for i in tqdm(range(0, upscaled_latents.shape[0], args.vae_batch_size)):
        with torch.no_grad():
            batch = vae.decode(upscaled_latents[i : i + args.vae_batch_size]).sample
        batch = batch.to("cpu")
        upscaled_images.append(batch)
    upscaled_images = torch.cat(upscaled_images, dim=0)

    # tensor to numpy
    upscaled_images = upscaled_images.permute(0, 2, 3, 1).numpy()
    upscaled_images = (upscaled_images + 1.0) * 127.5
    upscaled_images = upscaled_images.clip(0, 255).astype(np.uint8)

    upscaled_images = upscaled_images[..., ::-1]

    # save images
    for i, image in enumerate(upscaled_images):
        basename = os.path.basename(image_paths[i])
        basename_wo_ext, ext = os.path.splitext(basename)
        dest_file_name = os.path.join(args.output_dir, f"{basename_wo_ext}_upscaled{ext}")
        cv2.imwrite(dest_file_name, image)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--vae_path", type=str, default=None, help="VAE path")
    parser.add_argument("--weights", type=str, default=None, help="Weights path")
    parser.add_argument("--image_pattern", type=str, default=None, help="Image pattern")
    parser.add_argument("--output_dir", type=str, default=".", help="Output directory")
    parser.add_argument("--batch_size", type=int, default=4, help="Batch size")
    parser.add_argument("--vae_batch_size", type=int, default=1, help="VAE batch size")
    parser.add_argument("--debug", action="store_true", help="Debug mode")

    args = parser.parse_args()
    upscale_images(args)