File size: 3,357 Bytes
fe6327d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
# Sylvia Ritter. AKA: by silvery trait
# variable values
$pretrained_model_name_or_path = "D:\models\v1-5-pruned-mse-vae.ckpt"
$train_dir = "D:\dreambooth\train_sylvia_ritter\raw_data"
$training_folder = "all-images-v3"
$learning_rate = 5e-6
$dataset_repeats = 40
$train_batch_size = 6
$epoch = 4
$save_every_n_epochs=1
$mixed_precision="bf16"
$num_cpu_threads_per_process=6
$max_resolution = "768,576"
# You should not have to change values past this point
# stop script on error
$ErrorActionPreference = "Stop"
# activate venv
.\venv\Scripts\activate
# create caption json file
python D:\kohya_ss\finetune\merge_captions_to_metadata.py `
--caption_extention ".txt" $train_dir"\"$training_folder $train_dir"\meta_cap.json"
# create images buckets
python D:\kohya_ss\finetune\prepare_buckets_latents.py `
$train_dir"\"$training_folder `
$train_dir"\meta_cap.json" `
$train_dir"\meta_lat.json" `
$pretrained_model_name_or_path `
--batch_size 4 --max_resolution $max_resolution --mixed_precision fp16
# Get number of valid images
$image_num = Get-ChildItem "$train_dir\$training_folder" -Recurse -File -Include *.npz | Measure-Object | %{$_.Count}
$repeats = $image_num * $dataset_repeats
# calculate max_train_set
$max_train_set = [Math]::Ceiling($repeats / $train_batch_size * $epoch)
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process D:\kohya_ss\finetune\fine_tune.py `
--pretrained_model_name_or_path=$pretrained_model_name_or_path `
--in_json $train_dir"\meta_lat.json" `
--train_data_dir=$train_dir"\"$training_folder `
--output_dir=$train_dir"\fine_tuned2" `
--train_batch_size=$train_batch_size `
--dataset_repeats=$dataset_repeats `
--learning_rate=$learning_rate `
--max_train_steps=$max_train_set `
--use_8bit_adam --xformers `
--mixed_precision=$mixed_precision `
--save_every_n_epochs=$save_every_n_epochs `
--train_text_encoder `
--save_precision="fp16"
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process D:\kohya_ss\finetune\fine_tune.py `
--pretrained_model_name_or_path=$train_dir"\fine_tuned\last.ckpt" `
--in_json $train_dir"\meta_lat.json" `
--train_data_dir=$train_dir"\"$training_folder `
--output_dir=$train_dir"\fine_tuned2" `
--train_batch_size=$train_batch_size `
--dataset_repeats=$([Math]::Ceiling($dataset_repeats / 2)) `
--learning_rate=$learning_rate `
--max_train_steps=$([Math]::Ceiling($max_train_set / 2)) `
--use_8bit_adam --xformers `
--mixed_precision=$mixed_precision `
--save_every_n_epochs=$save_every_n_epochs `
--save_precision="fp16"
# Hypernetwork
accelerate launch --num_cpu_threads_per_process $num_cpu_threads_per_process D:\kohya_ss\finetune\fine_tune.py `
--pretrained_model_name_or_path=$pretrained_model_name_or_path `
--in_json $train_dir"\meta_lat.json" `
--train_data_dir=$train_dir"\"$training_folder `
--output_dir=$train_dir"\fine_tuned" `
--train_batch_size=$train_batch_size `
--dataset_repeats=$dataset_repeats `
--learning_rate=$learning_rate `
--max_train_steps=$max_train_set `
--use_8bit_adam --xformers `
--mixed_precision=$mixed_precision `
--save_every_n_epochs=$save_every_n_epochs `
--save_precision="fp16" `
--hypernetwork_module="hypernetwork_nai" |