model: | |
base_learning_rate: 1.0e-04 | |
target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion | |
params: | |
parameterization: "v" | |
low_scale_key: "lr" | |
linear_start: 0.0001 | |
linear_end: 0.02 | |
num_timesteps_cond: 1 | |
log_every_t: 200 | |
timesteps: 1000 | |
first_stage_key: "jpg" | |
cond_stage_key: "txt" | |
image_size: 128 | |
channels: 4 | |
cond_stage_trainable: false | |
conditioning_key: "hybrid-adm" | |
monitor: val/loss_simple_ema | |
scale_factor: 0.08333 | |
use_ema: False | |
low_scale_config: | |
target: ldm.modules.diffusionmodules.upscaling.ImageConcatWithNoiseAugmentation | |
params: | |
noise_schedule_config: # image space | |
linear_start: 0.0001 | |
linear_end: 0.02 | |
max_noise_level: 350 | |
unet_config: | |
target: ldm.modules.diffusionmodules.openaimodel.UNetModel | |
params: | |
use_checkpoint: True | |
num_classes: 1000 # timesteps for noise conditioning (here constant, just need one) | |
image_size: 128 | |
in_channels: 7 | |
out_channels: 4 | |
model_channels: 256 | |
attention_resolutions: [ 2,4,8] | |
num_res_blocks: 2 | |
channel_mult: [ 1, 2, 2, 4] | |
disable_self_attentions: [True, True, True, False] | |
disable_middle_self_attn: False | |
num_heads: 8 | |
use_spatial_transformer: True | |
transformer_depth: 1 | |
context_dim: 1024 | |
legacy: False | |
use_linear_in_transformer: True | |
first_stage_config: | |
target: ldm.models.autoencoder.AutoencoderKL | |
params: | |
embed_dim: 4 | |
ddconfig: | |
# attn_type: "vanilla-xformers" this model needs efficient attention to be feasible on HR data, also the decoder seems to break in half precision (UNet is fine though) | |
double_z: True | |
z_channels: 4 | |
resolution: 256 | |
in_channels: 3 | |
out_ch: 3 | |
ch: 128 | |
ch_mult: [ 1,2,4 ] # num_down = len(ch_mult)-1 | |
num_res_blocks: 2 | |
attn_resolutions: [ ] | |
dropout: 0.0 | |
lossconfig: | |
target: torch.nn.Identity | |
cond_stage_config: | |
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder | |
params: | |
freeze: True | |
layer: "penultimate" | |