kohya_ss / library /sdxl_train_util.py
Ateras's picture
Upload folder using huggingface_hub
fe6327d
import argparse
import gc
import math
import os
from types import SimpleNamespace
from typing import Any
import torch
from tqdm import tqdm
from transformers import CLIPTokenizer
import open_clip
from library import model_util, sdxl_model_util, train_util
from library.sdxl_lpw_stable_diffusion import SdxlStableDiffusionLongPromptWeightingPipeline
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
DEFAULT_NOISE_OFFSET = 0.0357
# TODO: separate checkpoint for each U-Net/Text Encoder/VAE
def load_target_model(args, accelerator, model_version: str, weight_dtype):
# load models for each process
for pi in range(accelerator.state.num_processes):
if pi == accelerator.state.local_process_index:
print(f"loading model for process {accelerator.state.local_process_index}/{accelerator.state.num_processes}")
(
load_stable_diffusion_format,
text_encoder1,
text_encoder2,
vae,
unet,
logit_scale,
ckpt_info,
) = _load_target_model(args, model_version, weight_dtype, accelerator.device if args.lowram else "cpu")
# work on low-ram device
if args.lowram:
text_encoder1.to(accelerator.device)
text_encoder2.to(accelerator.device)
unet.to(accelerator.device)
vae.to(accelerator.device)
gc.collect()
torch.cuda.empty_cache()
accelerator.wait_for_everyone()
text_encoder1, text_encoder2, unet = train_util.transform_models_if_DDP([text_encoder1, text_encoder2, unet])
return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info
def _load_target_model(args: argparse.Namespace, model_version: str, weight_dtype, device="cpu"):
# only supports StableDiffusion
name_or_path = args.pretrained_model_name_or_path
name_or_path = os.readlink(name_or_path) if os.path.islink(name_or_path) else name_or_path
load_stable_diffusion_format = os.path.isfile(name_or_path) # determine SD or Diffusers
assert (
load_stable_diffusion_format
), f"only supports StableDiffusion format for SDXL / SDXLではStableDiffusion形式のみサポートしています: {name_or_path}"
print(f"load StableDiffusion checkpoint: {name_or_path}")
(
text_encoder1,
text_encoder2,
vae,
unet,
logit_scale,
ckpt_info,
) = sdxl_model_util.load_models_from_sdxl_checkpoint(model_version, name_or_path, device)
# VAEを読み込む
if args.vae is not None:
vae = model_util.load_vae(args.vae, weight_dtype)
print("additional VAE loaded")
return load_stable_diffusion_format, text_encoder1, text_encoder2, vae, unet, logit_scale, ckpt_info
class WrapperTokenizer:
# open clipのtokenizerをHuggingFaceのtokenizerと同じ形で使えるようにする
# make open clip tokenizer compatible with HuggingFace tokenizer
def __init__(self):
open_clip_tokenizer = open_clip.tokenizer._tokenizer
self.model_max_length = 77
self.bos_token_id = open_clip_tokenizer.all_special_ids[0]
self.eos_token_id = open_clip_tokenizer.all_special_ids[1]
self.pad_token_id = 0 # 結果から推定している assumption from result
def __call__(self, *args: Any, **kwds: Any) -> Any:
return self.tokenize(*args, **kwds)
def tokenize(self, text, padding=False, truncation=None, max_length=None, return_tensors=None):
if padding == "max_length":
# for training
assert max_length is not None
assert truncation == True
assert return_tensors == "pt"
input_ids = open_clip.tokenize(text, context_length=max_length)
return SimpleNamespace(**{"input_ids": input_ids})
# for weighted prompt
assert isinstance(text, str), f"input must be str: {text}"
input_ids = open_clip.tokenize(text, context_length=self.model_max_length)[0] # tokenizer returns list
# find eos
eos_index = (input_ids == self.eos_token_id).nonzero().max()
input_ids = input_ids[: eos_index + 1] # include eos
return SimpleNamespace(**{"input_ids": input_ids})
# for Textual Inversion
# わりと面倒くさいな……これWeb UIとかでどうするんだろう / this is a bit annoying... how to do this in Web UI?
def encode(self, text, add_special_tokens=False):
assert not add_special_tokens
input_ids = open_clip.tokenizer._tokenizer.encode(text)
return input_ids
def add_tokens(self, new_tokens):
tokens_to_add = []
for token in new_tokens:
token = token.lower()
if token + "</w>" not in open_clip.tokenizer._tokenizer.encoder:
tokens_to_add.append(token)
# open clipのtokenizerに直接追加する / add tokens to open clip tokenizer
for token in tokens_to_add:
open_clip.tokenizer._tokenizer.encoder[token + "</w>"] = len(open_clip.tokenizer._tokenizer.encoder)
open_clip.tokenizer._tokenizer.decoder[len(open_clip.tokenizer._tokenizer.decoder)] = token + "</w>"
open_clip.tokenizer._tokenizer.vocab_size += 1
# open clipのtokenizerのcacheに直接設定することで、bpeとかいうやつに含まれていなくてもtokenizeできるようにする
# めちゃくちゃ乱暴なので、open clipのtokenizerの仕様が変わったら動かなくなる
# set cache of open clip tokenizer directly to enable tokenization even if the token is not included in bpe
# this is very rough, so it will not work if the specification of open clip tokenizer changes
open_clip.tokenizer._tokenizer.cache[token] = token + "</w>"
return len(tokens_to_add)
def convert_tokens_to_ids(self, tokens):
input_ids = [open_clip.tokenizer._tokenizer.encoder[token + "</w>"] for token in tokens]
return input_ids
def __len__(self):
return open_clip.tokenizer._tokenizer.vocab_size
def load_tokenizers(args: argparse.Namespace):
print("prepare tokenizers")
original_path = TOKENIZER_PATH
tokenizer1: CLIPTokenizer = None
if args.tokenizer_cache_dir:
local_tokenizer_path = os.path.join(args.tokenizer_cache_dir, original_path.replace("/", "_"))
if os.path.exists(local_tokenizer_path):
print(f"load tokenizer from cache: {local_tokenizer_path}")
tokenizer1 = CLIPTokenizer.from_pretrained(local_tokenizer_path)
if tokenizer1 is None:
tokenizer1 = CLIPTokenizer.from_pretrained(original_path)
if args.tokenizer_cache_dir and not os.path.exists(local_tokenizer_path):
print(f"save Tokenizer to cache: {local_tokenizer_path}")
tokenizer1.save_pretrained(local_tokenizer_path)
if hasattr(args, "max_token_length") and args.max_token_length is not None:
print(f"update token length: {args.max_token_length}")
# tokenizer2 is from open_clip
# TODO caching
tokenizer2 = WrapperTokenizer()
return [tokenizer1, tokenizer2]
def get_hidden_states(
args: argparse.Namespace, input_ids1, input_ids2, tokenizer1, tokenizer2, text_encoder1, text_encoder2, weight_dtype=None
):
# input_ids: b,n,77 -> b*n, 77
b_size = input_ids1.size()[0]
input_ids1 = input_ids1.reshape((-1, tokenizer1.model_max_length)) # batch_size*n, 77
input_ids2 = input_ids2.reshape((-1, tokenizer2.model_max_length)) # batch_size*n, 77
# text_encoder1
enc_out = text_encoder1(input_ids1, output_hidden_states=True, return_dict=True)
hidden_states1 = enc_out["hidden_states"][11]
# text_encoder2
enc_out = text_encoder2(input_ids2, output_hidden_states=True, return_dict=True)
hidden_states2 = enc_out["hidden_states"][-2] # penuultimate layer
pool2 = enc_out["text_embeds"]
# b*n, 77, 768 or 1280 -> b, n*77, 768 or 1280
n_size = 1 if args.max_token_length is None else args.max_token_length // 75
hidden_states1 = hidden_states1.reshape((b_size, -1, hidden_states1.shape[-1]))
hidden_states2 = hidden_states2.reshape((b_size, -1, hidden_states2.shape[-1]))
if args.max_token_length is not None:
# bs*3, 77, 768 or 1024
# encoder1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
states_list = [hidden_states1[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, args.max_token_length, tokenizer1.model_max_length):
states_list.append(hidden_states1[:, i : i + tokenizer1.model_max_length - 2]) # <BOS> の後から <EOS> の前まで
states_list.append(hidden_states1[:, -1].unsqueeze(1)) # <EOS>
hidden_states1 = torch.cat(states_list, dim=1)
# v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
states_list = [hidden_states2[:, 0].unsqueeze(1)] # <BOS>
for i in range(1, args.max_token_length, tokenizer2.model_max_length):
chunk = hidden_states2[:, i : i + tokenizer2.model_max_length - 2] # <BOS> の後から 最後の前まで
# this causes an error:
# RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
# if i > 1:
# for j in range(len(chunk)): # batch_size
# if input_ids2[n_index + j * n_size, 1] == tokenizer2.eos_token_id: # 空、つまり <BOS> <EOS> <PAD> ...のパターン
# chunk[j, 0] = chunk[j, 1] # 次の <PAD> の値をコピーする
states_list.append(chunk) # <BOS> の後から <EOS> の前まで
states_list.append(hidden_states2[:, -1].unsqueeze(1)) # <EOS> か <PAD> のどちらか
hidden_states2 = torch.cat(states_list, dim=1)
# pool はnの最初のものを使う
pool2 = pool2[::n_size]
if weight_dtype is not None:
# this is required for additional network training
hidden_states1 = hidden_states1.to(weight_dtype)
hidden_states2 = hidden_states2.to(weight_dtype)
return hidden_states1, hidden_states2, pool2
def timestep_embedding(timesteps, dim, max_period=10000):
"""
Create sinusoidal timestep embeddings.
:param timesteps: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an [N x dim] Tensor of positional embeddings.
"""
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
device=timesteps.device
)
args = timesteps[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
return embedding
def get_timestep_embedding(x, outdim):
assert len(x.shape) == 2
b, dims = x.shape[0], x.shape[1]
x = torch.flatten(x)
emb = timestep_embedding(x, outdim)
emb = torch.reshape(emb, (b, dims * outdim))
return emb
def get_size_embeddings(orig_size, crop_size, target_size, device):
emb1 = get_timestep_embedding(orig_size, 256)
emb2 = get_timestep_embedding(crop_size, 256)
emb3 = get_timestep_embedding(target_size, 256)
vector = torch.cat([emb1, emb2, emb3], dim=1).to(device)
return vector
def save_sd_model_on_train_end(
args: argparse.Namespace,
src_path: str,
save_stable_diffusion_format: bool,
use_safetensors: bool,
save_dtype: torch.dtype,
epoch: int,
global_step: int,
text_encoder1,
text_encoder2,
unet,
vae,
logit_scale,
ckpt_info,
):
def sd_saver(ckpt_file, epoch_no, global_step):
sdxl_model_util.save_stable_diffusion_checkpoint(
ckpt_file,
text_encoder1,
text_encoder2,
unet,
epoch_no,
global_step,
ckpt_info,
vae,
logit_scale,
save_dtype,
)
def diffusers_saver(out_dir):
raise NotImplementedError("diffusers_saver is not implemented")
train_util.save_sd_model_on_train_end_common(
args, save_stable_diffusion_format, use_safetensors, epoch, global_step, sd_saver, diffusers_saver
)
# epochとstepの保存、メタデータにepoch/stepが含まれ引数が同じになるため、統合している
# on_epoch_end: Trueならepoch終了時、Falseならstep経過時
def save_sd_model_on_epoch_end_or_stepwise(
args: argparse.Namespace,
on_epoch_end: bool,
accelerator,
src_path,
save_stable_diffusion_format: bool,
use_safetensors: bool,
save_dtype: torch.dtype,
epoch: int,
num_train_epochs: int,
global_step: int,
text_encoder1,
text_encoder2,
unet,
vae,
logit_scale,
ckpt_info,
):
def sd_saver(ckpt_file, epoch_no, global_step):
sdxl_model_util.save_stable_diffusion_checkpoint(
ckpt_file,
text_encoder1,
text_encoder2,
unet,
epoch_no,
global_step,
ckpt_info,
vae,
logit_scale,
save_dtype,
)
def diffusers_saver(out_dir):
raise NotImplementedError("diffusers_saver is not implemented")
train_util.save_sd_model_on_epoch_end_or_stepwise_common(
args,
on_epoch_end,
accelerator,
save_stable_diffusion_format,
use_safetensors,
epoch,
num_train_epochs,
global_step,
sd_saver,
diffusers_saver,
)
# TextEncoderの出力をキャッシュする
# weight_dtypeを指定するとText Encoderそのもの、およひ出力がweight_dtypeになる
def cache_text_encoder_outputs(args, accelerator, tokenizers, text_encoders, dataset, weight_dtype):
print("caching text encoder outputs")
tokenizer1, tokenizer2 = tokenizers
text_encoder1, text_encoder2 = text_encoders
text_encoder1.to(accelerator.device)
text_encoder2.to(accelerator.device)
if weight_dtype is not None:
text_encoder1.to(dtype=weight_dtype)
text_encoder2.to(dtype=weight_dtype)
text_encoder1_cache = {}
text_encoder2_cache = {}
for batch in tqdm(dataset):
input_ids1_batch = batch["input_ids"].to(accelerator.device)
input_ids2_batch = batch["input_ids2"].to(accelerator.device)
# split batch to avoid OOM
# TODO specify batch size by args
for input_id1, input_id2 in zip(input_ids1_batch.split(1), input_ids2_batch.split(1)):
# remove input_ids already in cache
input_id1_cache_key = tuple(input_id1.flatten().tolist())
input_id2_cache_key = tuple(input_id2.flatten().tolist())
if input_id1_cache_key in text_encoder1_cache:
assert input_id2_cache_key in text_encoder2_cache
continue
with torch.no_grad():
encoder_hidden_states1, encoder_hidden_states2, pool2 = get_hidden_states(
args,
input_id1,
input_id2,
tokenizer1,
tokenizer2,
text_encoder1,
text_encoder2,
None if not args.full_fp16 else weight_dtype,
)
encoder_hidden_states1 = encoder_hidden_states1.detach().to("cpu").squeeze(0) # n*75+2,768
encoder_hidden_states2 = encoder_hidden_states2.detach().to("cpu").squeeze(0) # n*75+2,1280
pool2 = pool2.detach().to("cpu").squeeze(0) # 1280
text_encoder1_cache[input_id1_cache_key] = encoder_hidden_states1
text_encoder2_cache[input_id2_cache_key] = (encoder_hidden_states2, pool2)
return text_encoder1_cache, text_encoder2_cache
def add_sdxl_training_arguments(parser: argparse.ArgumentParser):
parser.add_argument(
"--cache_text_encoder_outputs", action="store_true", help="cache text encoder outputs / text encoderの出力をキャッシュする"
)
def verify_sdxl_training_args(args: argparse.Namespace):
assert (
not args.v2 and not args.v_parameterization
), "v2 or v_parameterization cannot be enabled in SDXL training / SDXL学習ではv2とv_parameterizationを有効にすることはできません"
if args.clip_skip is not None:
print("clip_skip will be unexpected / SDXL学習ではclip_skipは動作しません")
if args.multires_noise_iterations:
print(
f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET}, but noise_offset is disabled due to multires_noise_iterations / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されていますが、multires_noise_iterationsが有効になっているためnoise_offsetは無効になります"
)
else:
if args.noise_offset is None:
args.noise_offset = DEFAULT_NOISE_OFFSET
elif args.noise_offset != DEFAULT_NOISE_OFFSET:
print(
f"Warning: SDXL has been trained with noise_offset={DEFAULT_NOISE_OFFSET} / SDXLはnoise_offset={DEFAULT_NOISE_OFFSET}で学習されています"
)
print(f"noise_offset is set to {args.noise_offset} / noise_offsetが{args.noise_offset}に設定されました")
assert (
not hasattr(args, "weighted_captions") or not args.weighted_captions
), "weighted_captions cannot be enabled in SDXL training currently / SDXL学習では今のところweighted_captionsを有効にすることはできません"
def sample_images(*args, **kwargs):
return train_util.sample_images_common(SdxlStableDiffusionLongPromptWeightingPipeline, *args, **kwargs)