File size: 38,280 Bytes
dbd97ea
 
 
 
65ba9f3
8863707
f6a6b20
0136a5b
 
 
 
d4256bf
 
8bba8de
281eda1
d5ec495
f6a6b20
8bba8de
 
 
d4256bf
8bba8de
d4256bf
8bba8de
0136a5b
f6a6b20
0136a5b
f6a6b20
0136a5b
 
 
 
 
 
65ba9f3
 
 
47e4bdb
 
8bba8de
 
 
 
 
 
0136a5b
d4256bf
 
 
 
 
 
 
0136a5b
dbd97ea
 
 
7af825c
0136a5b
 
 
 
 
7af825c
 
 
 
 
0136a5b
7af825c
 
0136a5b
 
 
 
7af825c
 
 
 
 
 
0136a5b
7af825c
dbd97ea
 
65ba9f3
 
0136a5b
 
65ba9f3
0136a5b
 
 
 
 
 
 
 
 
dbd97ea
 
 
0136a5b
dbd97ea
 
0136a5b
 
 
dbd97ea
 
0136a5b
dbd97ea
 
 
0136a5b
dbd97ea
 
0136a5b
 
8863707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47e4bdb
 
 
 
d4256bf
 
 
 
 
 
 
47e4bdb
d4256bf
 
 
47e4bdb
d4256bf
47e4bdb
d4256bf
 
0136a5b
 
 
 
 
 
 
 
 
be3c6a3
0136a5b
8863707
 
 
dbd97ea
 
 
 
 
 
 
 
 
0136a5b
dbd97ea
0136a5b
dbd97ea
 
 
 
 
7af825c
 
dbd97ea
 
 
0136a5b
 
 
 
 
 
 
 
 
 
 
 
 
d4256bf
47e4bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4256bf
47e4bdb
d4256bf
0136a5b
d4256bf
 
 
47e4bdb
 
d4256bf
 
47e4bdb
0136a5b
 
dbd97ea
0136a5b
 
 
7af825c
 
d4256bf
 
 
0136a5b
d4256bf
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd97ea
0136a5b
dbd97ea
 
0136a5b
 
dbd97ea
 
0136a5b
8bba8de
d4256bf
8bba8de
 
 
 
 
 
 
 
36bdd78
 
d4256bf
 
 
 
 
 
 
 
 
 
 
8bba8de
36bdd78
00e2ba1
0136a5b
 
7af825c
c29f61a
36bdd78
 
 
 
 
 
0136a5b
dbd97ea
 
7af825c
36bdd78
7af825c
36bdd78
 
47e4bdb
d4256bf
36bdd78
 
d4256bf
 
 
 
 
 
36bdd78
 
 
d4256bf
36bdd78
 
 
8bba8de
 
 
 
 
 
 
 
d4256bf
 
b342f89
d4256bf
b342f89
d4256bf
 
b342f89
0136a5b
36bdd78
 
b342f89
36bdd78
b342f89
36bdd78
 
23f2441
d4256bf
36bdd78
23f2441
36bdd78
b342f89
d4256bf
36bdd78
d4256bf
b342f89
36bdd78
b342f89
36bdd78
b342f89
36bdd78
 
23f2441
d4256bf
36bdd78
23f2441
8bba8de
36bdd78
dcdb545
8bba8de
 
 
 
 
65ba9f3
 
8bba8de
47e4bdb
8bba8de
65ba9f3
 
8bba8de
 
 
 
 
 
 
 
 
 
 
 
65ba9f3
 
8bba8de
 
 
 
 
 
 
 
 
 
65ba9f3
 
8bba8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd97ea
 
ced5a34
 
 
 
 
281eda1
ced5a34
 
7af825c
dbd97ea
0136a5b
 
dbd97ea
8bba8de
f2d7524
 
 
 
 
 
 
ced5a34
 
 
 
 
 
 
 
 
 
 
 
 
 
dbd97ea
7af825c
47e4bdb
dbd97ea
 
 
 
0136a5b
47e4bdb
 
8bba8de
dbd97ea
 
 
0136a5b
 
 
dbd97ea
 
 
 
 
 
8863707
0136a5b
d4256bf
0136a5b
 
 
 
 
 
 
 
 
36bdd78
 
d4256bf
0136a5b
 
 
d4256bf
 
0136a5b
dbd97ea
 
 
8863707
0136a5b
d4256bf
0136a5b
 
 
 
 
 
 
 
 
36bdd78
 
d4256bf
0136a5b
 
 
d4256bf
 
0136a5b
dbd97ea
 
 
8863707
0136a5b
d4256bf
0136a5b
 
 
 
 
 
 
 
 
36bdd78
 
d4256bf
0136a5b
 
 
d4256bf
 
0136a5b
dbd97ea
 
47e4bdb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0136a5b
8bba8de
65ba9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bba8de
 
65ba9f3
 
 
 
 
 
 
 
 
 
 
 
8bba8de
 
 
9ca1ad8
 
 
 
8bba8de
65ba9f3
 
8bba8de
 
 
65ba9f3
 
 
 
 
9ca1ad8
8bba8de
65ba9f3
 
 
 
 
 
 
 
 
 
 
 
8bba8de
281eda1
 
9ca1ad8
281eda1
67f7f2c
281eda1
 
9ca1ad8
281eda1
 
 
9ca1ad8
281eda1
 
 
 
 
f6a6b20
 
 
1723e63
 
281eda1
 
 
f6a6b20
281eda1
f6a6b20
281eda1
f6a6b20
1723e63
f6a6b20
281eda1
8bba8de
 
 
0136a5b
8bba8de
65ba9f3
 
8bba8de
 
0136a5b
8bba8de
65ba9f3
 
8bba8de
0136a5b
281eda1
65ba9f3
 
281eda1
 
d5ec495
f6a6b20
65ba9f3
 
 
 
281eda1
 
 
d5ec495
 
 
8bba8de
 
 
b342f89
65ba9f3
 
 
281eda1
 
 
d5ec495
 
 
65ba9f3
 
 
0136a5b
dbd97ea
8bba8de
 
 
 
d4256bf
 
 
dbd97ea
 
65ba9f3
8c60083
 
8bba8de
d4256bf
9ca1ad8
dbd97ea
 
281eda1
 
 
 
 
 
 
 
 
 
 
 
 
dbd97ea
9ca1ad8
8bba8de
65ba9f3
 
8bba8de
 
 
 
 
 
 
 
9ca1ad8
8bba8de
dbd97ea
 
 
 
 
36bdd78
 
d4256bf
dbd97ea
 
36bdd78
0136a5b
 
36bdd78
d4256bf
9ca1ad8
0136a5b
dbd97ea
 
36bdd78
 
 
65ba9f3
d4256bf
 
 
 
 
 
 
 
 
 
 
 
 
8bba8de
d4256bf
36bdd78
 
 
 
d4256bf
 
 
 
 
 
 
 
36bdd78
 
 
 
 
d4256bf
36bdd78
 
 
 
 
d4256bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
00e2ba1
 
b342f89
 
8bba8de
b342f89
8bba8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b342f89
 
8bba8de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0136a5b
8863707
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
import json
import re
import random
from collections import defaultdict
from datetime import datetime
import hashlib
import gradio as gr

from dotenv import load_dotenv
load_dotenv()

from gen_api_answer import (
    get_model_response, 
    parse_model_response,
    prometheus_parse_model_response,
    atla_parse_model_response,
    flow_judge_parse_model_response
)

from random_sample_generation import (
    get_random_human_ai_pair,
    get_random_human_ai_ground_truth_pair,
    generate_ai_response
)   
from db import add_vote, create_db_connection, get_votes

from utils import Vote

from common import (
    POLICY_CONTENT,
    ACKNOWLEDGEMENTS,
    CSS_STYLES,
    MAIN_TITLE,
    HOW_IT_WORKS,
)
from prompts import (
    DEFAULT_EVAL_PROMPT,
    DEFAULT_EVAL_PROMPT_EDITABLE,
    FIXED_EVAL_SUFFIX,
    DEFAULT_EVAL_CRITERIA,
    DEFAULT_SCORE_1,
    DEFAULT_SCORE_2,
    DEFAULT_SCORE_3,
    DEFAULT_SCORE_4,
    DEFAULT_SCORE_5,
)
from leaderboard import (
    get_leaderboard,
    get_leaderboard_stats,
    get_model_rankings,
    DEFAULT_ELO,
    K_FACTOR
)


elo_scores = defaultdict(lambda: DEFAULT_ELO)
vote_counts = defaultdict(int)

db = create_db_connection()
votes_collection = get_votes(db)

current_time = datetime.now()


# Load the model_data from JSONL
def load_model_data():
    model_data = {}
    try:
        with open("data/models.jsonl", "r") as f:
            for line in f:
                model = json.loads(line)
                model_data[model["name"]] = {
                    "organization": model["organization"],
                    "license": model["license"],
                    "api_model": model["api_model"],
                }
    except FileNotFoundError:
        print("Warning: models.jsonl not found")
        return {}
    return model_data


model_data = load_model_data()

def store_vote_data(prompt, response_a, response_b, model_a, model_b, winner, judge_id):
    prompt_value = prompt.value if hasattr(prompt, 'value') else prompt
    
    vote = Vote(
        timestamp=datetime.now().isoformat(),
        prompt=prompt_value,
        response_a=response_a,
        response_b=response_b,
        model_a=model_a,
        model_b=model_b,
        winner=winner,
        judge_id=judge_id,
    )
    add_vote(vote, db)


def parse_variables(prompt):
    # Extract variables enclosed in double curly braces
    variables = re.findall(r"{{(.*?)}}", prompt)
    # Remove duplicates while preserving order
    seen = set()
    variables = [
        x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip()))
    ]
    return variables


def get_final_prompt(eval_prompt, variable_values):
    # Replace variables in the eval prompt with their values
    for var, val in variable_values.items():
        eval_prompt = eval_prompt.replace("{{" + var + "}}", val)
    return eval_prompt



def get_ip(request: gr.Request) -> str:
    """Get and hash the IP address from the request."""
    if "cf-connecting-ip" in request.headers:
        ip = request.headers["cf-connecting-ip"]
    elif "x-forwarded-for" in request.headers:
        ip = request.headers["x-forwarded-for"]
        if "," in ip:
            ip = ip.split(",")[0]
    else:
        ip = request.client.host
    
    # Hash the IP address for privacy
    return hashlib.sha256(ip.encode()).hexdigest()[:16]


def get_vote_message(choice: str, model_a: str, model_b: str) -> tuple[str, str]:
    """Generate appropriate message based on vote and model rankings.
    Returns (title, message) tuple."""
    # Get current rankings
    voting_data = get_current_votes()
    leaderboard = get_leaderboard(model_data, voting_data, show_preliminary=True)
    rankings = get_model_rankings(leaderboard)
    pos_a = rankings.get(model_a, 0)
    pos_b = rankings.get(model_b, 0)
    
    if choice == "Tie":
        return "It's a tie!", "Keep voting responsibly πŸ€—"
    
    # Check if vote aligns with leaderboard
    if (choice == "A" and pos_a < pos_b) or (choice == "B" and pos_b < pos_a):
        return "The favourite wins!", "Keep voting responsibly πŸ€—"
    else:
        return "The underdog wins!", "Keep voting responsibly πŸ€—"


def vote(
    choice,
    model_a,
    model_b,
    final_prompt,
    score_a,
    critique_a,
    score_b,
    critique_b,
    request: gr.Request,
):
    # Get hashed IP as judge_id
    judge_id = get_ip(request)
    
    # Update ELO scores based on user choice
    elo_a = elo_scores[model_a]
    elo_b = elo_scores[model_b]

    # Calculate expected scores
    Ea = 1 / (1 + 10 ** ((elo_b - elo_a) / 400))
    Eb = 1 / (1 + 10 ** ((elo_a - elo_b) / 400))

    # Assign actual scores
    if choice == "A":
        Sa, Sb = 1, 0
    elif choice == "B":
        Sa, Sb = 0, 1
    else:
        Sa, Sb = 0.5, 0.5

    # Update scores and vote counts
    elo_scores[model_a] += K_FACTOR * (Sa - Ea)
    elo_scores[model_b] += K_FACTOR * (Sb - Eb)
    vote_counts[model_a] += 1
    vote_counts[model_b] += 1

    # Format the full responses with score and critique
    response_a = f"""{score_a}

{critique_a}"""

    response_b = f"""{score_b}

{critique_b}"""

    # Store the vote data with the final prompt
    store_vote_data(
        final_prompt, response_a, response_b, model_a, model_b, choice, judge_id
    )
    
    # Get model positions for display
    voting_data = get_current_votes()
    leaderboard = get_leaderboard(model_data, voting_data, show_preliminary=True)
    rankings = get_model_rankings(leaderboard)
    pos_a = rankings.get(model_a, 0)
    pos_b = rankings.get(model_b, 0)
    
    # Format model names with positions and win/loss indicators
    if choice == "Tie":
        model_a_display = f"*Model: {model_a} (Position #{pos_a})*"
        model_b_display = f"*Model: {model_b} (Position #{pos_b})*"
    else:
        winner = model_a if choice == "A" else model_b
        loser = model_b if choice == "A" else model_a
        winner_pos = pos_a if choice == "A" else pos_b
        loser_pos = pos_b if choice == "A" else pos_a
        
        model_a_display = f"*Model: {model_a} {'βœ…' if choice == 'A' else '❌'} (Position #{pos_a})*"
        model_b_display = f"*Model: {model_b} {'βœ…' if choice == 'B' else '❌'} (Position #{pos_b})*"
    
    # Generate vote message
    title, message = get_vote_message(choice, model_a, model_b)
    
    return [
        gr.update(interactive=False, variant="primary" if choice == "A" else "secondary"),  # vote_a
        gr.update(interactive=False, variant="primary" if choice == "B" else "secondary"),  # vote_b
        gr.update(interactive=False, variant="primary" if choice == "Tie" else "secondary"),  # vote_tie
        gr.update(value=model_a_display),  # model_name_a
        gr.update(value=model_b_display),  # model_name_b
        gr.update(interactive=True, value="Regenerate judges", variant="secondary"),  # send_btn
        gr.update(value="🎲 New round", variant="primary"),  # random_btn
        gr.Info(message, title=title),  # success message
    ]


def get_current_votes():
    """Get current votes from database."""
    return get_votes(db)


# Update the refresh_leaderboard function
def refresh_leaderboard(show_preliminary):
    """Refresh the leaderboard data and stats."""
    voting_data = get_current_votes()
    leaderboard = get_leaderboard(model_data, voting_data, show_preliminary)
    data = [
        [
            entry["Model"],
            float(entry["ELO Score"]),
            entry["95% CI"],
            entry["# Votes"],
            entry["Organization"],
            entry["License"],
        ]
        for entry in leaderboard
    ]
    stats = get_leaderboard_stats(model_data, voting_data)
    return [gr.update(value=data), gr.update(value=stats)]


# Update the leaderboard table definition in the UI
leaderboard_table = gr.Dataframe(
    headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"],
    datatype=["str", "number", "str", "number", "str", "str", "str"],
)


def populate_random_example(request: gr.Request, compatible_mode: bool):
    """Generate a random human-AI conversation example and reset judge outputs."""
    if compatible_mode:
        # Generate all three components when compatible mode is enabled
        human_msg, ai_msg, ground_truth_msg = get_random_human_ai_ground_truth_pair()
    else:
        # Generate only human and AI messages when compatible mode is disabled
        human_msg, ai_msg = get_random_human_ai_pair()
        ground_truth_msg = ""
    
    return [
        gr.update(value=human_msg),
        gr.update(value=ai_msg),
        gr.update(value="🎲", variant="secondary"),  # Reset random button appearance
        gr.update(value=""),  # Clear score A
        gr.update(value=""),  # Clear critique A
        gr.update(value=""),  # Clear score B
        gr.update(value=""),  # Clear critique B
        gr.update(interactive=False, variant="primary"),  # Reset vote A
        gr.update(interactive=False, variant="primary"),  # Reset vote B
        gr.update(interactive=False, variant="primary"),  # Reset vote tie
        gr.update(value="*Model: Hidden*"),  # Reset model name A
        gr.update(value="*Model: Hidden*"),  # Reset model name B
        gr.update(value=ground_truth_msg, visible=compatible_mode),  # Set ground truth and visibility
    ]


with gr.Blocks(theme="default", css=CSS_STYLES) as demo:
    gr.Markdown(MAIN_TITLE)
    gr.Markdown(HOW_IT_WORKS)
    
    # Hidden eval prompt that will always contain DEFAULT_EVAL_PROMPT
    eval_prompt = gr.Textbox(
        value=DEFAULT_EVAL_PROMPT,
        visible=False
    )

    with gr.Tabs():
        with gr.TabItem("Judge Arena"):
            with gr.Row():
                # Left side - Input section
                with gr.Column(scale=1):
                    with gr.Group():
                        human_input = gr.TextArea(
                            label="πŸ‘© User Input",
                            lines=10,
                            placeholder="Enter the human message here..."
                        )
                        with gr.Row():
                            generate_btn = gr.Button(
                                "Generate AI Response",
                                size="sm",
                                interactive=False
                            )
                        
                        ai_response = gr.TextArea(
                            label="πŸ€– AI Response", 
                            lines=15,
                            placeholder="Enter the AI response here..."
                        )
                        
                        # Ground truth response (initially hidden)
                        ground_truth = gr.TextArea(
                            label="🎯 Ground truth response",
                            lines=12,
                            placeholder="Enter the ground truth response here...",
                            visible=False
                        )
                        
                    with gr.Row():
                        random_btn = gr.Button("🎲", scale=2)
                        send_btn = gr.Button(
                            value="Run judges",
                            variant="primary",
                            size="lg",
                            scale=8
                        )

                # Right side - Model outputs
                with gr.Column(scale=1):
                    gr.Markdown("### πŸ‘©β€βš–οΈ Judge A")
                    with gr.Group():
                        model_name_a = gr.Markdown("*Model: Hidden*")
                        with gr.Row():
                            with gr.Column(scale=1, min_width=100):  # Fixed narrow width for score
                                score_a = gr.Textbox(label="Score", lines=6, interactive=False)
                                vote_a = gr.Button("Vote A", variant="primary", interactive=False)
                            with gr.Column(scale=9, min_width=400):  # Wider width for critique
                                critique_a = gr.TextArea(label="Critique", lines=8, interactive=False)
                
                    # Tie button row
                    with gr.Row() as tie_button_row:
                        with gr.Column():
                            vote_tie = gr.Button("Tie", variant="primary", interactive=False)
                    
                
                    gr.Markdown("### πŸ§‘β€βš–οΈ Judge B")
                    with gr.Group():
                        model_name_b = gr.Markdown("*Model: Hidden*")
                        with gr.Row():
                            with gr.Column(scale=1, min_width=100):  # Fixed narrow width for score
                                score_b = gr.Textbox(label="Score", lines=6, interactive=False)
                                vote_b = gr.Button("Vote B", variant="primary", interactive=False)
                            with gr.Column(scale=9, min_width=400):  # Wider width for critique
                                critique_b = gr.TextArea(label="Critique", lines=8, interactive=False)
                        # Place Vote B button directly under Judge B
                
            gr.Markdown("<br>")
            

            # Replace the "Edit Judge Prompt" Accordion section with:
            with gr.Accordion("πŸ“ Edit Judge Prompt", open=False) as prompt_accordion:
                gr.Markdown("<br>")
                use_reference_toggle = gr.Checkbox(
                    label="Use a reference response",
                    value=False
                )
                
                # Hide the default prompt editor
                with gr.Column(visible=False) as default_prompt_editor:
                    eval_prompt_editable = gr.TextArea(
                        value=DEFAULT_EVAL_PROMPT_EDITABLE,
                        label="Evaluation Criteria",
                        lines=12
                    )

                    with gr.Row(visible=False) as edit_buttons_row:
                        cancel_prompt_btn = gr.Button("Cancel")
                        save_prompt_btn = gr.Button("Save", variant="primary")
                    gr.Markdown("*The sample being evaluated is always appended as:*")
                    gr.Markdown(f"```{FIXED_EVAL_SUFFIX}")
                
                # Show the compatible mode editor
                with gr.Column(visible=True) as compatible_prompt_editor:
                    with gr.Row():
                        # Left column - Evaluation Criteria
                        with gr.Column(scale=1):
                            eval_criteria_text = gr.TextArea(
                                label="Evaluation Criteria",
                                lines=12,
                                value=DEFAULT_EVAL_CRITERIA,
                                placeholder="Enter the evaluation criteria..."
                            )
                            prometheus_reference = gr.Markdown(
                                "<br> *By default, we use the Prometheus absolute grading prompt template - see [here](https://huggingface.co/prometheus-eval/prometheus-7b-v2.0).*",
                                visible=True 
                            )
                        
                        # Right column - Score Descriptions
                        with gr.Column(scale=1):
                            score1_description = gr.TextArea(
                                label="Score 1",
                                value=DEFAULT_SCORE_1,
                                placeholder="Description for score 1",
                                lines=2
                            )
                            score2_description = gr.TextArea(
                                label="Score 2", 
                                value=DEFAULT_SCORE_2,
                                placeholder="Description for score 2",
                                lines=2
                            )
                            score3_description = gr.TextArea(
                                label="Score 3",
                                value=DEFAULT_SCORE_3,
                                placeholder="Description for score 3",
                                lines=2
                            )
                            score4_description = gr.TextArea(
                                label="Score 4",
                                value=DEFAULT_SCORE_4,
                                placeholder="Description for score 4",
                                lines=2
                            )
                            score5_description = gr.TextArea(
                                label="Score 5",
                                value=DEFAULT_SCORE_5,
                                placeholder="Description for score 5",
                                lines=2
                            )

                    # Add save/cancel buttons for compatible mode
                    with gr.Row(visible=False) as compatible_edit_buttons_row:
                        compatible_cancel_btn = gr.Button("Cancel")
                        compatible_save_btn = gr.Button("Save", variant="primary")

        with gr.TabItem("Leaderboard"):
            with gr.Row():
                with gr.Column(scale=1):
                    show_preliminary = gr.Checkbox(
                        label="Reveal preliminary results",
                        value=True,  # Checked by default
                        info="Show all models, including models with less human ratings (< 300 votes)",
                        interactive=True
                    )
            stats_display = gr.Markdown()
            leaderboard_table = gr.Dataframe(
                headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"],
                datatype=["str", "number", "str", "number", "str", "str", "str"],
            )
            
            gr.Markdown("""<br>
                        <br>
                        Judge Arena uses Together AI for inference of open-source models. FP8 models are named as -- "Turbo" where the performance of the FP16 reference models is closely matched:

                        [*"Together Turbo achieves this performance while maintaining full accuracy compared to Meta's reference implementation across all models. Llama-3.1-405B-Instruct-Turbo matches the accuracy of Meta reference models."*](https://www.together.ai/blog/together-inference-engine-2)
            """)

            # Add change handler for checkbox
            show_preliminary.change(
                fn=refresh_leaderboard,
                inputs=[show_preliminary],
                outputs=[leaderboard_table, stats_display]
            )

            # Update the load event
            demo.load(
                fn=refresh_leaderboard,
                inputs=[show_preliminary],
                outputs=[leaderboard_table, stats_display]
            )

        with gr.TabItem("Policy"):
            gr.Markdown(POLICY_CONTENT)
            gr.Markdown(ACKNOWLEDGEMENTS)

    # Define state variables for model tracking
    model_a_state = gr.State()
    model_b_state = gr.State()
    final_prompt_state = gr.State()
    eval_prompt_previous = gr.State(value=DEFAULT_EVAL_PROMPT_EDITABLE)  # Initialize with default value
    is_editing = gr.State(False)  # Track editing state
    compatible_mode_state = gr.State(False)  # Track compatible mode state

    # Update model names after responses are generated
    def update_model_names(model_a, model_b):
        return gr.update(value=f"*Model: {model_a}*"), gr.update(
            value=f"*Model: {model_b}*"
        )

    # Store the last submitted prompt and variables for comparison
    last_submission = gr.State({})

    # Update the vote button click handlers
    vote_a.click(
        fn=vote,
        inputs=[
            gr.State("A"),
            model_a_state,
            model_b_state,
            final_prompt_state,
            score_a,
            critique_a,
            score_b,
            critique_b,
        ],
        outputs=[
            vote_a,
            vote_b,
            vote_tie,
            model_name_a,
            model_name_b,
            send_btn,
            random_btn,
            gr.State(),  # placeholder for success message
        ],
    )

    vote_b.click(
        fn=vote,
        inputs=[
            gr.State("B"),
            model_a_state,
            model_b_state,
            final_prompt_state,
            score_a,
            critique_a,
            score_b,
            critique_b,
        ],
        outputs=[
            vote_a,
            vote_b,
            vote_tie,
            model_name_a,
            model_name_b,
            send_btn,
            random_btn,
            gr.State(),  # placeholder for success message
        ],
    )

    vote_tie.click(
        fn=vote,
        inputs=[
            gr.State("Tie"),
            model_a_state,
            model_b_state,
            final_prompt_state,
            score_a,
            critique_a,
            score_b,
            critique_b,
        ],
        outputs=[
            vote_a,
            vote_b,
            vote_tie,
            model_name_a,
            model_name_b,
            send_btn,
            random_btn,
            gr.State(),  # placeholder for success message
        ],
    )

    # Add handlers for save/cancel buttons
    def save_prompt(new_prompt, previous_prompt):
        return [
            gr.update(value=new_prompt),  # Update the prompt
            new_prompt,  # Update the previous prompt state
            gr.update(visible=False)  # Hide the buttons
        ]

    def cancel_prompt(previous_prompt):
        return [
            gr.update(value=previous_prompt),  # Revert to previous prompt
            previous_prompt,  # Keep the previous prompt state
            gr.update(visible=False)  # Hide the buttons
        ]

    def show_edit_buttons(current_value, previous_value):
        # Show buttons only if the current value differs from the previous value
        return gr.update(visible=current_value != previous_value)

    # Add handlers for save/cancel buttons and prompt changes
    save_prompt_btn.click(
        fn=save_prompt,
        inputs=[eval_prompt_editable, eval_prompt_previous],
        outputs=[eval_prompt_editable, eval_prompt_previous, edit_buttons_row]
    )

    cancel_prompt_btn.click(
        fn=cancel_prompt,
        inputs=[eval_prompt_previous],
        outputs=[eval_prompt_editable, eval_prompt_previous, edit_buttons_row]
    )

    eval_prompt_editable.change(
        fn=show_edit_buttons,
        inputs=[eval_prompt_editable, eval_prompt_previous],
        outputs=edit_buttons_row
    )

    # Function to toggle visibility based on compatible mode
    def toggle_use_reference(checked):
        if checked:
            # Get new random samples with ground truth when enabling reference mode
            human_msg, ai_msg, ground_truth_msg = get_random_human_ai_ground_truth_pair()
            return {
                ground_truth: gr.update(visible=True, value=ground_truth_msg),
                human_input: gr.update(value=human_msg),
                ai_response: gr.update(value=ai_msg),
                # Reset other UI elements
                score_a: gr.update(value=""),
                critique_a: gr.update(value=""),
                score_b: gr.update(value=""),
                critique_b: gr.update(value=""),
                vote_a: gr.update(interactive=False, variant="primary"),
                vote_b: gr.update(interactive=False, variant="primary"),
                vote_tie: gr.update(interactive=False, variant="primary"),
                model_name_a: gr.update(value="*Model: Hidden*"),
                model_name_b: gr.update(value="*Model: Hidden*"),
                random_btn: gr.update(value="🎲", variant="secondary"),
            }
        else:
            # Just hide ground truth when disabling reference mode
            return {
                ground_truth: gr.update(visible=False)
            }

    # Update the change handler to include all necessary outputs
    use_reference_toggle.change(
        fn=toggle_use_reference,
        inputs=[use_reference_toggle],
        outputs=[
            ground_truth,
            human_input,
            ai_response,
            score_a,
            critique_a,
            score_b,
            critique_b,
            vote_a,
            vote_b,
            vote_tie,
            model_name_a,
            model_name_b,
            random_btn,
        ]
    )

    # Add a new state variable to track first game
    first_game_state = gr.State(True)  # Initialize as True

    # Update the submit function to use the state variable
    def submit_and_store(
        use_reference,
        eval_criteria_text_input,
        human_input,
        ai_response,
        ground_truth_input,
        score1_description,
        score2_description,
        score3_description,
        score4_description,
        score5_description,
        is_first_game,  # Add state variable as input
    ):
        # Build prompt data dictionary
        prompt_data = {
            'human_input': human_input,
            'ai_response': ai_response,
            'ground_truth_input': ground_truth_input,
            'eval_criteria': eval_criteria_text_input,
            'score1_desc': score1_description,
            'score2_desc': score2_description,
            'score3_desc': score3_description,
            'score4_desc': score4_description,
            'score5_desc': score5_description,
        }

        # Get list of active models only for matches
        active_models = [name for name, info in model_data.items() 
                        if info.get("active", True)]
        
        atla_model = "Atla-8B-preview"
        
        if is_first_game:
            # For the first game, ensure new model is one of the models to catch up on votes
            other_models = [m for m in active_models if m != atla_model]
            other_model = random.choice(other_models)
            
            # Randomly assign new model to either position A or B
            if random.random() < 0.5:
                model_a, model_b = atla_model, other_model
            else:
                model_a, model_b = other_model, atla_model
        else:
            # For subsequent games, new models appears 40% of the time
            if random.random() < 0.4:
                # Randomly choose between new models
                new_model = random.choice(["Atla-8B-preview"]) # add "Flow-Judge-1.0" once ready
                other_models = [m for m in active_models if m not in [new_model]]
                other_model = random.choice(other_models)
                
                if random.random() < 0.5:
                    model_a, model_b = new_model, other_model
                else:
                    model_a, model_b = other_model, new_model
            else:
                # For other cases, exclude both Atla and Flow-Judge
                non_special_models = [m for m in active_models if m not in new_model]
                model1, model2 = random.sample(non_special_models, 2)
                model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1)

        # Get responses from models
        response_a = get_model_response(
            model_a,
            model_data.get(model_a),
            prompt_data,
            use_reference=use_reference
        )
        response_b = get_model_response(
            model_b,
            model_data.get(model_b),
            prompt_data,
            use_reference=use_reference
        )

        # Parse the responses based on model, using appropriate parsing for different models
        is_prometheus_a = (model_data.get(model_a)['organization'] == 'Prometheus')
        is_prometheus_b = (model_data.get(model_b)['organization'] == 'Prometheus')
        is_atla_a = (model_data.get(model_a)['organization'] == 'Atla')
        is_atla_b = (model_data.get(model_b)['organization'] == 'Atla')
        is_flow_judge_a = (model_data.get(model_a)['organization'] == 'Flow AI')
        is_flow_judge_b = (model_data.get(model_b)['organization'] == 'Flow AI')    

        if is_prometheus_a:
            score_a_val, critique_a_val = prometheus_parse_model_response(response_a)
            score_a_val = f"{score_a_val} / 5"
        elif is_atla_a:
            score_a_val, critique_a_val = atla_parse_model_response(response_a)
            score_a_val = f"{score_a_val} / 5"
        elif is_flow_judge_a:
            score_a_val, critique_a_val = flow_judge_parse_model_response(response_a)
            score_a_val = f"{score_a_val} / 5"
        else:
            score_a_val, critique_a_val = parse_model_response(response_a)
            score_a_val = f"{score_a_val} / 5"

        if is_prometheus_b:
            score_b_val, critique_b_val = prometheus_parse_model_response(response_b)
            score_b_val = f"{score_b_val} / 5"
        elif is_atla_b:
            score_b_val, critique_b_val = atla_parse_model_response(response_b)
            score_b_val = f"{score_b_val} / 5"
        elif is_flow_judge_b:
            score_b_val, critique_b_val = flow_judge_parse_model_response(response_b)
            score_b_val = f"{score_b_val} / 5"
        else:
            score_b_val, critique_b_val = parse_model_response(response_b)
            score_b_val = f"{score_b_val} / 5"

        return (
            score_a_val,
            critique_a_val,
            score_b_val,
            critique_b_val,
            gr.update(interactive=True, variant="primary"),  # vote_a
            gr.update(interactive=True, variant="primary"),  # vote_b
            gr.update(interactive=True, variant="primary"),  # vote_tie
            model_a,
            model_b,
            eval_prompt,
            gr.update(value="*Model: Hidden*"),
            gr.update(value="*Model: Hidden*"),
            gr.update(value="Regenerate judges", variant="secondary", interactive=True),
            gr.update(value="🎲"),  # random_btn
            False,  # Set first_game_state to False after first submission
        )

    # Update the click handler to use False for is_first_game after first submission
    def create_submit_handler():
        first_game = True
        
        def handler(*args):
            nonlocal first_game
            result = submit_and_store(*args, first_game)
            first_game = False  # Set to False after first submission
            return result
        
        return handler

    # Update the send_btn click handler
    send_btn.click(
        fn=submit_and_store,
        inputs=[
            use_reference_toggle,
            eval_criteria_text,
            human_input,
            ai_response,
            ground_truth,
            score1_description,
            score2_description,
            score3_description,
            score4_description,
            score5_description,
            first_game_state,  # Add first_game_state as input
        ],
        outputs=[
            score_a,
            critique_a,
            score_b,
            critique_b,
            vote_a,
            vote_b,
            vote_tie,
            model_a_state,
            model_b_state,
            final_prompt_state,
            model_name_a,
            model_name_b,
            send_btn,
            random_btn,
            first_game_state,  # Add first_game_state as output
        ],
    )

    # Add random button handler
    random_btn.click(
        fn=populate_random_example,
        inputs=[use_reference_toggle],  # Use compatible mode toggle to decide behavior
        outputs=[
            human_input, 
            ai_response,
            random_btn,
            score_a,
            critique_a,
            score_b,
            critique_b,
            vote_a,
            vote_b,
            vote_tie,
            model_name_a,
            model_name_b,
            ground_truth,  # Set ground truth
        ]
    )

    # Add new input change handlers
    def handle_input_change():
        """Reset UI state when inputs are changed"""
        return [
            gr.update(interactive=False),  # vote_a
            gr.update(interactive=False),  # vote_b
            gr.update(interactive=False),  # vote_tie
            gr.update(value="Run judges", variant="primary"),  # send_btn
            gr.update(value="🎲", variant="secondary"),  # random_btn
        ]

    # Update the change handlers for inputs
    human_input.change(
        fn=handle_input_change,
        inputs=[],
        outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn]
    )

    ai_response.change(
        fn=handle_input_change,
        inputs=[],
        outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn]
    )

    generate_btn.click(
        fn=lambda msg: (
            generate_ai_response(msg)[0],  # Only take the response text
            gr.update(
                value="Generate AI Response",  # Keep the label
                interactive=False  # Disable the button
            )
        ),
        inputs=[human_input],
        outputs=[ai_response, generate_btn]
    )

    human_input.change(
        fn=lambda x: gr.update(interactive=bool(x.strip())),
        inputs=[human_input],
        outputs=[generate_btn]
    )

    # Update the demo.load to include the random example population
    demo.load(
        fn=lambda: populate_random_example(None, False),  # Pass False for initial compatible_mode
        inputs=[],
        outputs=[
            human_input,
            ai_response,
            random_btn,
            score_a,
            critique_a,
            score_b,
            critique_b,
            vote_a,
            vote_b,
            vote_tie,
            model_name_a,
            model_name_b,
            ground_truth,
        ]
    )

    # Add new state variables for compatible mode
    eval_criteria_previous = gr.State(value=DEFAULT_EVAL_CRITERIA)
    score1_previous = gr.State(value=DEFAULT_SCORE_1)
    score2_previous = gr.State(value=DEFAULT_SCORE_2)
    score3_previous = gr.State(value=DEFAULT_SCORE_3)
    score4_previous = gr.State(value=DEFAULT_SCORE_4)
    score5_previous = gr.State(value=DEFAULT_SCORE_5)

    # Add new functions to handle compatible mode saves/cancels
    def save_compatible_prompt(criteria, score1, score2, score3, score4, score5):
        return [
            gr.update(value=criteria),  # Update criteria
            criteria,  # Update previous criteria state
            gr.update(value=score1),
            score1,
            gr.update(value=score2),
            score2,
            gr.update(value=score3),
            score3,
            gr.update(value=score4),
            score4,
            gr.update(value=score5),
            score5,
            gr.update(visible=False)  # Hide buttons
        ]

    def cancel_compatible_prompt(prev_criteria, prev_score1, prev_score2, prev_score3, prev_score4, prev_score5):
        return [
            gr.update(value=prev_criteria),
            prev_criteria,
            gr.update(value=prev_score1),
            prev_score1,
            gr.update(value=prev_score2),
            prev_score2,
            gr.update(value=prev_score3),
            prev_score3,
            gr.update(value=prev_score4),
            prev_score4,
            gr.update(value=prev_score5),
            prev_score5,
            gr.update(visible=False)
        ]

    def show_compatible_edit_buttons(*current_values):
        previous_values = current_values[1::2]  # Get previous values
        current_values = current_values[::2]    # Get current values
        return gr.update(visible=any(curr != prev for curr, prev in zip(current_values, previous_values)))

    # Add click handlers for compatible mode buttons
    compatible_save_btn.click(
        fn=save_compatible_prompt,
        inputs=[
            eval_criteria_text,
            score1_description,
            score2_description,
            score3_description,
            score4_description,
            score5_description
        ],
        outputs=[
            eval_criteria_text,
            eval_criteria_previous,
            score1_description,
            score1_previous,
            score2_description,
            score2_previous,
            score3_description,
            score3_previous,
            score4_description,
            score4_previous,
            score5_description,
            score5_previous,
            compatible_edit_buttons_row
        ]
    )

    compatible_cancel_btn.click(
        fn=cancel_compatible_prompt,
        inputs=[
            eval_criteria_previous,
            score1_previous,
            score2_previous,
            score3_previous,
            score4_previous,
            score5_previous
        ],
        outputs=[
            eval_criteria_text,
            eval_criteria_previous,
            score1_description,
            score1_previous,
            score2_description,
            score2_previous,
            score3_description,
            score3_previous,
            score4_description,
            score4_previous,
            score5_description,
            score5_previous,
            compatible_edit_buttons_row
        ]
    )

    # Add change handlers for all compatible mode inputs
    for component in [eval_criteria_text, score1_description, score2_description, 
                     score3_description, score4_description, score5_description]:
        component.change(
            fn=show_compatible_edit_buttons,
            inputs=[
                eval_criteria_text,
                eval_criteria_previous,
                score1_description,
                score1_previous,
                score2_description,
                score2_previous,
                score3_description,
                score3_previous,
                score4_description,
                score4_previous,
                score5_description,
                score5_previous
            ],
            outputs=compatible_edit_buttons_row
        )

if __name__ == "__main__":
    demo.launch()