Spaces:
Running
Running
File size: 18,040 Bytes
2cb716b acbea0e 2cb716b 6e812c0 c7a9dfe 214129a 0f79b0c c7a9dfe 0f79b0c 4ae4a5a 2cb716b 6e812c0 4ae4a5a d5ec495 0f79b0c af1f413 ab62ff3 2cb716b ab62ff3 0136a5b ab62ff3 2cb716b ab62ff3 2cb716b ab62ff3 0136a5b 2cb716b ab62ff3 2cb716b ab62ff3 0136a5b 2cb716b ab62ff3 0136a5b 2cb716b 0f79b0c 6e812c0 0f79b0c 4959421 0f79b0c 6e812c0 0f79b0c 6e812c0 214129a 6e812c0 0f79b0c 214129a 0f79b0c 4959421 0f79b0c 214129a 0f79b0c 214129a 0f79b0c 214129a d5ec495 acbea0e 0f79b0c 6e812c0 c7a9dfe 6e812c0 2cb716b 0136a5b 0f79b0c c7a9dfe 214129a d5ec495 0f79b0c d5ec495 c7a9dfe 0f79b0c 214129a d5ec495 6e812c0 d5ec495 0f79b0c 214129a d5ec495 c7a9dfe d5ec495 0f79b0c d5ec495 0f79b0c c7a9dfe 6e812c0 2cb716b 0136a5b 6e812c0 c7a9dfe 6e812c0 0136a5b 6e812c0 c7a9dfe 6e812c0 214129a 0f79b0c 214129a 0f79b0c 6e812c0 acbea0e c7a9dfe acbea0e d5ec495 2cb716b 6e812c0 c7a9dfe 6e812c0 2cb716b 0136a5b 2cb716b 0136a5b 0f79b0c 2cb716b 0136a5b 2cb716b 44387c3 2cb716b 0136a5b 2cb716b 44387c3 0136a5b 2cb716b 0f79b0c 0136a5b ab62ff3 c7a9dfe ab62ff3 6e812c0 40a124e 6e812c0 40a124e 6e812c0 40a124e 6e812c0 ab62ff3 6e812c0 214129a 0f79b0c d5ec495 214129a d5ec495 6e812c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 |
from openai import OpenAI
import anthropic
from together import Together
import cohere
import json
import re
import os
import requests
from prompts import (
JUDGE_SYSTEM_PROMPT,
PROMETHEUS_PROMPT,
PROMETHEUS_PROMPT_WITH_REFERENCE,
ATLA_PROMPT,
ATLA_PROMPT_WITH_REFERENCE,
FLOW_JUDGE_PROMPT
)
from transformers import AutoTokenizer
from huggingface_hub import login
# Initialize clients
anthropic_client = anthropic.Anthropic()
openai_client = OpenAI()
together_client = Together()
hf_api_key = os.getenv("HF_API_KEY")
login(hf_api_key)
flow_judge_api_key = os.getenv("FLOW_JUDGE_API_KEY")
cohere_client = cohere.ClientV2(os.getenv("CO_API_KEY"))
def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
"""Get response from OpenAI API"""
try:
response = openai_client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
],
max_completion_tokens=max_tokens,
temperature=temperature,
)
return response.choices[0].message.content
except Exception as e:
return f"Error with OpenAI model {model_name}: {str(e)}"
def get_anthropic_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
"""Get response from Anthropic API"""
try:
response = anthropic_client.messages.create(
model=model_name,
max_tokens=max_tokens,
temperature=temperature,
system=system_prompt,
messages=[{"role": "user", "content": [{"type": "text", "text": prompt}]}],
)
return response.content[0].text
except Exception as e:
return f"Error with Anthropic model {model_name}: {str(e)}"
def get_together_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
"""Get response from Together API"""
try:
response = together_client.chat.completions.create(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
],
max_tokens=max_tokens,
temperature=temperature,
stream=False,
)
return response.choices[0].message.content
except Exception as e:
return f"Error with Together model {model_name}: {str(e)}"
def get_prometheus_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
"""Get response from Hugging Face model"""
try:
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {hf_api_key}",
"Content-Type": "application/json"
}
# Create messages list for chat template
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": prompt})
# Apply chat template
model_id = "prometheus-eval/prometheus-7b-v2.0"
tokenizer = AutoTokenizer.from_pretrained(model_id)
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
payload = {
"inputs": formatted_prompt,
"parameters": {
"max_new_tokens": max_tokens,
"return_full_text": False,
"temperature": temperature
}
}
response = requests.post(
"https://otb7jglxy6r37af6.us-east-1.aws.endpoints.huggingface.cloud",
headers=headers,
json=payload
)
return response.json()[0]["generated_text"]
except Exception as e:
return f"Error with Hugging Face model {model_name}: {str(e)}"
def get_atla_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
"""Get response from HF endpoint for Atla model"""
try:
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {hf_api_key}",
"Content-Type": "application/json"
}
# Create messages list for chat template
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
messages.append({"role": "user", "content": prompt})
# Apply chat template
model_id = "AtlaAI/Atla-8B-preview" # Update this if using a different model
tokenizer = AutoTokenizer.from_pretrained(model_id)
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
payload = {
"inputs": formatted_prompt,
"parameters": {
"max_new_tokens": max_tokens,
"return_full_text": False,
"temperature": temperature,
"seed": 42,
"add_generation_prompt": True
}
}
response = requests.post(
"https://azk0vbxyrc64s2v2.us-east-1.aws.endpoints.huggingface.cloud",
headers=headers,
json=payload
)
return response.json()[0]["generated_text"]
except Exception as e:
return f"Error with Atla model {model_name}: {str(e)}"
def get_flow_judge_response(model_name, prompt, max_tokens=500, temperature=0.1, top_p=0.95) -> str:
"""Get response from Flow Judge"""
try:
response = requests.post(
"https://tsukuyomi.tailfa581.ts.net/v1/chat/completions",
headers={
"Content-Type": "application/json",
"Authorization": f"Bearer {flow_judge_api_key}"
},
json={
"model": model_name,
"messages": [
{"role": "user", "content": prompt}
],
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p
}
)
response.raise_for_status()
return response.json()["choices"][0]['message']['content']
except Exception as e:
return f"Error with Flow Judge completions model {model_name}: {str(e)}"
def get_cohere_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
"""Get response from Cohere API"""
try:
response = cohere_client.chat(
model=model_name,
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt}
],
max_tokens=max_tokens,
temperature=temperature
)
# Extract the text from the content items
content_items = response.message.content
if isinstance(content_items, list):
# Get the text from the first content item
return content_items[0].text
return str(content_items) # Fallback if it's not a list
except Exception as e:
return f"Error with Cohere model {model_name}: {str(e)}"
def get_model_response(
model_name,
model_info,
prompt_data,
use_reference=False,
max_tokens=500,
temperature=0
):
"""Get response from appropriate API based on model organization"""
if not model_info:
return "Model not found or unsupported."
api_model = model_info["api_model"]
organization = model_info["organization"]
# Determine if model is Prometheus or Atla or Flow Judge
is_prometheus = (organization == "Prometheus")
is_atla = (organization == "Atla")
is_flow_judge = (organization == "Flow AI")
# For non-Prometheus/Atla models/Flow Judge, use the Judge system prompt
system_prompt = None if (is_prometheus or is_atla or is_flow_judge) else JUDGE_SYSTEM_PROMPT
# Select the appropriate base prompt
if is_atla:
base_prompt = ATLA_PROMPT_WITH_REFERENCE if use_reference else ATLA_PROMPT
elif is_flow_judge:
base_prompt = FLOW_JUDGE_PROMPT
else:
base_prompt = PROMETHEUS_PROMPT_WITH_REFERENCE if use_reference else PROMETHEUS_PROMPT
# For non-Prometheus/non-Atla models, replace the specific instruction
if not (is_prometheus or is_atla or is_flow_judge):
base_prompt = base_prompt.replace(
'3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"',
'3. Your output format should strictly adhere to JSON as follows: {{"feedback": "<write feedback>", "result": <numerical score>}}. Ensure the output is valid JSON, without additional formatting or explanations.'
)
try:
if not is_flow_judge:
# Format the prompt with the provided data, only using available keys
final_prompt = base_prompt.format(
human_input=prompt_data['human_input'],
ai_response=prompt_data['ai_response'],
ground_truth_input=prompt_data.get('ground_truth_input', ''),
eval_criteria=prompt_data['eval_criteria'],
score1_desc=prompt_data['score1_desc'],
score2_desc=prompt_data['score2_desc'],
score3_desc=prompt_data['score3_desc'],
score4_desc=prompt_data['score4_desc'],
score5_desc=prompt_data['score5_desc']
)
else:
human_input = f"<user_input>\n{prompt_data['human_input']}\n</user_input>"
ai_response = f"<response>\n{prompt_data['ai_response']}\n</response>"
ground_truth=prompt_data.get('ground_truth_input', '')
if ground_truth:
response_reference = f"<response_reference>\n{ground_truth}\n</response_reference>"
else:
response_reference = ""
eval_criteria = prompt_data['eval_criteria']
score1_desc = f"- Score 1: {prompt_data['score1_desc']}\n"
score2_desc = f"- Score 2: {prompt_data['score2_desc']}\n"
score3_desc = f"- Score 3: {prompt_data['score3_desc']}\n"
score4_desc = f"- Score 4: {prompt_data['score4_desc']}\n"
score5_desc = f"- Score 5: {prompt_data['score5_desc']}"
rubric = score1_desc + score2_desc + score3_desc + score4_desc + score5_desc
if response_reference:
inputs = human_input + "\n"+ response_reference
else:
inputs = human_input
final_prompt = base_prompt.format(
INPUTS=inputs,
OUTPUT=ai_response,
EVALUATION_CRITERIA=eval_criteria,
RUBRIC=rubric
)
except KeyError as e:
return f"Error formatting prompt: Missing required field {str(e)}"
try:
if organization == "OpenAI":
return get_openai_response(
api_model, final_prompt, system_prompt, max_tokens, temperature
)
elif organization == "Anthropic":
return get_anthropic_response(
api_model, final_prompt, system_prompt, max_tokens, temperature
)
elif organization == "Prometheus":
return get_prometheus_response(
api_model, final_prompt, system_prompt, max_tokens, temperature = 0.01
)
elif organization == "Atla":
return get_atla_response(
api_model, final_prompt, system_prompt, max_tokens, temperature = 0.01
)
elif organization == "Cohere":
return get_cohere_response(
api_model, final_prompt, system_prompt, max_tokens, temperature
)
elif organization == "Flow AI":
return get_flow_judge_response(
api_model, final_prompt, max_tokens, temperature
)
else:
# All other organizations use Together API
return get_together_response(
api_model, final_prompt, system_prompt, max_tokens, temperature
)
except Exception as e:
return f"Error with {organization} model {model_name}: {str(e)}"
def parse_model_response(response):
try:
# Debug print
print(f"Raw model response: {response}")
# If response is already a dictionary, use it directly
if isinstance(response, dict):
return str(response.get("result", "N/A")), response.get("feedback", "N/A")
# First try to parse the entire response as JSON
try:
data = json.loads(response)
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
except json.JSONDecodeError:
# If that fails (typically for smaller models), try to find JSON within the response
json_match = re.search(r"{.*}", response, re.DOTALL)
if json_match:
data = json.loads(json_match.group(0))
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
else:
return "Error", f"Invalid response format returned - here is the raw model response: {response}"
except Exception as e:
# Debug print for error case
print(f"Failed to parse response: {str(e)}")
# If the error message itself contains valid JSON, try to parse that
try:
error_json_match = re.search(r"{.*}", str(e), re.DOTALL)
if error_json_match:
data = json.loads(error_json_match.group(0))
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
except:
pass
return "Error", f"Failed to parse response: {response}"
def prometheus_parse_model_response(output):
try:
print(f"Raw model response: {output}")
output = output.strip()
# Remove "Feedback:" prefix if present (case insensitive)
output = re.sub(r'^feedback:\s*', '', output, flags=re.IGNORECASE)
# New pattern to match [RESULT] X at the beginning
begin_result_pattern = r'^\[RESULT\]\s*(\d+)\s*\n*(.*?)$'
begin_match = re.search(begin_result_pattern, output, re.DOTALL | re.IGNORECASE)
if begin_match:
score = int(begin_match.group(1))
feedback = begin_match.group(2).strip()
return str(score), feedback
# Existing patterns for end-of-string results...
pattern = r"(.*?)\s*\[RESULT\]\s*[\(\[]?(\d+)[\)\]]?"
match = re.search(pattern, output, re.DOTALL | re.IGNORECASE)
if match:
feedback = match.group(1).strip()
score = int(match.group(2))
return str(score), feedback
# If no match, try to match "... Score: X"
pattern = r"(.*?)\s*(?:Score|Result)\s*:\s*[\(\[]?(\d+)[\)\]]?"
match = re.search(pattern, output, re.DOTALL | re.IGNORECASE)
if match:
feedback = match.group(1).strip()
score = int(match.group(2))
return str(score), feedback
# Pattern to handle [Score X] at the end
pattern = r"(.*?)\s*\[(?:Score|Result)\s*[\(\[]?(\d+)[\)\]]?\]$"
match = re.search(pattern, output, re.DOTALL)
if match:
feedback = match.group(1).strip()
score = int(match.group(2))
return str(score), feedback
# Final fallback attempt
pattern = r"[\(\[]?(\d+)[\)\]]?\s*\]?$"
match = re.search(pattern, output)
if match:
score = int(match.group(1))
feedback = output[:match.start()].rstrip()
# Remove any trailing brackets from feedback
feedback = re.sub(r'\s*\[[^\]]*$', '', feedback).strip()
return str(score), feedback
return "Error", f"Failed to parse response: {output}"
except Exception as e:
print(f"Failed to parse response: {str(e)}")
return "Error", f"Exception during parsing: {str(e)}"
def atla_parse_model_response(output):
"""Parse response from ATLA model"""
try:
print(f"Raw Atla model response: {output}")
output = output.strip()
# Look for the Reasoning and Result sections
reasoning_match = re.search(r'\*\*Reasoning:\*\*(.*?)(?=\*\*Result:|$)', output, re.DOTALL)
result_match = re.search(r'\*\*Result:\*\*\s*(\d+)', output)
if reasoning_match and result_match:
feedback = reasoning_match.group(1).strip()
score = result_match.group(1)
return str(score), feedback
return "Error", f"Failed to parse ATLA response format: {output}"
except Exception as e:
print(f"Failed to parse ATLA response: {str(e)}")
return "Error", f"Exception during parsing: {str(e)}"
def flow_judge_parse_model_response(output):
try:
print(f"Raw model response: {output}")
# Convert multiple line breaks to single ones and strip whitespace
output = re.sub(r'\n{2,}', '\n', output.strip())
# Compile regex patterns
feedback_pattern = re.compile(r"<feedback>\s*(.*?)\s*</feedback>", re.DOTALL)
score_pattern = re.compile(r"<score>\s*(\d+)\s*</score>", re.DOTALL)
feedback_match = feedback_pattern.search(output)
score_match = score_pattern.search(output)
if feedback_match or not score_match:
feedback = feedback_match.group(1).strip()
score = int(score_match.group(1).strip())
return str(score), feedback
return "Error", f"Failed to parse response: {output}"
except Exception as e:
print(f"Failed to parse response: {str(e)}")
return "Error", f"Exception during parsing: {str(e)}" |