judge-arena / app.py
kaikaidai's picture
Update app.py
9fb17ef verified
raw
history blame
24.4 kB
import json
import re
import random
from collections import defaultdict
from datetime import datetime, timezone
import hashlib
from typing import Dict, List
from dotenv import load_dotenv
load_dotenv()
import gradio as gr
from gen_api_answer import (
get_model_response,
parse_model_response,
get_random_human_ai_pair,
generate_ai_response
)
from db import add_vote, create_db_connection, get_votes
from utils import Vote
from common import (
POLICY_CONTENT,
ACKNOWLEDGEMENTS,
DEFAULT_EVAL_PROMPT,
DEFAULT_INPUT,
DEFAULT_RESPONSE,
CSS_STYLES,
MAIN_TITLE,
HOW_IT_WORKS,
BATTLE_RULES,
EVAL_DESCRIPTION,
VOTING_HEADER,
)
from leaderboard import (
get_leaderboard,
get_leaderboard_stats,
calculate_elo_change,
get_model_rankings,
DEFAULT_ELO,
K_FACTOR
)
elo_scores = defaultdict(lambda: DEFAULT_ELO)
vote_counts = defaultdict(int)
db = create_db_connection()
votes_collection = get_votes(db)
current_time = datetime.now()
# Load the model_data from JSONL
def load_model_data():
model_data = {}
try:
with open("data/models.jsonl", "r") as f:
for line in f:
model = json.loads(line)
model_data[model["name"]] = {
"organization": model["organization"],
"license": model["license"],
"api_model": model["api_model"],
}
except FileNotFoundError:
print("Warning: models.jsonl not found")
return {}
return model_data
model_data = load_model_data()
def store_vote_data(prompt, response_a, response_b, model_a, model_b, winner, judge_id):
vote = Vote(
timestamp=datetime.now().isoformat(),
prompt=prompt,
response_a=response_a,
response_b=response_b,
model_a=model_a,
model_b=model_b,
winner=winner,
judge_id=judge_id,
)
add_vote(vote, db)
def parse_variables(prompt):
# Extract variables enclosed in double curly braces
variables = re.findall(r"{{(.*?)}}", prompt)
# Remove duplicates while preserving order
seen = set()
variables = [
x.strip() for x in variables if not (x.strip() in seen or seen.add(x.strip()))
]
return variables
def get_final_prompt(eval_prompt, variable_values):
# Replace variables in the eval prompt with their values
for var, val in variable_values.items():
eval_prompt = eval_prompt.replace("{{" + var + "}}", val)
return eval_prompt
def submit_prompt(eval_prompt, *variable_values):
try:
variables = parse_variables(eval_prompt)
variable_values_dict = {var: val for var, val in zip(variables, variable_values)}
final_prompt = get_final_prompt(eval_prompt, variable_values_dict)
models = list(model_data.keys())
model1, model2 = random.sample(models, 2)
model_a, model_b = (model1, model2) if random.random() < 0.5 else (model2, model1)
response_a = get_model_response(model_a, model_data.get(model_a), final_prompt)
response_b = get_model_response(model_b, model_data.get(model_b), final_prompt)
return (
response_a,
response_b,
gr.update(visible=True),
gr.update(visible=True),
model_a,
model_b,
final_prompt,
)
except Exception as e:
print(f"Error in submit_prompt: {str(e)}")
return (
"Error generating response",
"Error generating response",
gr.update(visible=False),
gr.update(visible=False),
None,
None,
None,
)
def get_ip(request: gr.Request) -> str:
"""Get and hash the IP address from the request."""
if "cf-connecting-ip" in request.headers:
ip = request.headers["cf-connecting-ip"]
elif "x-forwarded-for" in request.headers:
ip = request.headers["x-forwarded-for"]
if "," in ip:
ip = ip.split(",")[0]
else:
ip = request.client.host
# Hash the IP address for privacy
return hashlib.sha256(ip.encode()).hexdigest()[:16]
def get_vote_message(choice: str, model_a: str, model_b: str) -> str:
"""Generate appropriate message based on vote and model rankings."""
voting_data = get_current_votes()
leaderboard = get_leaderboard(model_data, voting_data, show_preliminary=True)
rankings = get_model_rankings(leaderboard)
pos_a = rankings.get(model_a, 0)
pos_b = rankings.get(model_b, 0)
if choice == "Tie":
return f"It's a tie! Currently, {model_a} ranks #{pos_a} and {model_b} ranks #{pos_b}. \n"
# Get chosen and rejected models based on vote
model_chosen = model_a if choice == "A" else model_b
model_rejected = model_b if choice == "A" else model_a
pos_chosen = pos_a if choice == "A" else pos_b
pos_rejected = pos_b if choice == "A" else pos_a
# Check if vote aligns with leaderboard
if (choice == "A" and pos_a < pos_b) or (choice == "B" and pos_b < pos_a):
return f"You're in-line with the community! {model_chosen} ranks #{pos_chosen} ahead of {model_rejected} in #{pos_rejected}. \n"
else:
return f"You don't think like everyone else ;) {model_chosen} ranks #{pos_chosen} which is behind {model_rejected} in #{pos_rejected}. \n"
def vote(
choice,
model_a,
model_b,
final_prompt,
score_a,
critique_a,
score_b,
critique_b,
request: gr.Request,
):
# Get hashed IP as judge_id
judge_id = get_ip(request)
# Update ELO scores based on user choice
elo_a = elo_scores[model_a]
elo_b = elo_scores[model_b]
# Calculate expected scores
Ea = 1 / (1 + 10 ** ((elo_b - elo_a) / 400))
Eb = 1 / (1 + 10 ** ((elo_a - elo_b) / 400))
# Assign actual scores
if choice == "A":
Sa, Sb = 1, 0
elif choice == "B":
Sa, Sb = 0, 1
else:
Sa, Sb = 0.5, 0.5
# Update scores and vote counts
elo_scores[model_a] += K_FACTOR * (Sa - Ea)
elo_scores[model_b] += K_FACTOR * (Sb - Eb)
vote_counts[model_a] += 1
vote_counts[model_b] += 1
# Format the full responses with score and critique
response_a = f"""{score_a}
{critique_a}"""
response_b = f"""{score_b}
{critique_b}"""
# Store the vote data with the final prompt
store_vote_data(
final_prompt, response_a, response_b, model_a, model_b, choice, judge_id
)
# Generate vote message
message = get_vote_message(choice, model_a, model_b)
# Return updates for UI components
return [
gr.update(interactive=False, variant="primary" if choice == "A" else "secondary"), # vote_a
gr.update(interactive=False, variant="primary" if choice == "B" else "secondary"), # vote_b
gr.update(interactive=False, variant="primary" if choice == "Tie" else "secondary"), # vote_tie
gr.update(value=f"*Model: {model_a}*"), # model_name_a
gr.update(value=f"*Model: {model_b}*"), # model_name_b
gr.update(interactive=True, value="Regenerate judges", variant="secondary"), # send_btn
gr.update(value="🎲 New round", variant="primary"), # random_btn
gr.Info(message, title = "🥳 Thanks for voting responsibly!"), # success message
]
def get_current_votes():
"""Get current votes from database."""
return get_votes(db)
# Update the refresh_leaderboard function
def refresh_leaderboard(show_preliminary):
"""Refresh the leaderboard data and stats."""
voting_data = get_current_votes()
leaderboard = get_leaderboard(model_data, voting_data, show_preliminary)
data = [
[
entry["Model"],
float(entry["ELO Score"]),
entry["95% CI"],
entry["# Votes"],
entry["Organization"],
entry["License"],
]
for entry in leaderboard
]
stats = get_leaderboard_stats(model_data, voting_data)
return [gr.update(value=data), gr.update(value=stats)]
# Update the leaderboard table definition in the UI
leaderboard_table = gr.Dataframe(
headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"],
datatype=["str", "number", "str", "number", "str", "str", "str"],
)
def populate_random_example(request: gr.Request):
"""Generate a random human-AI conversation example and reset judge outputs."""
human_msg, ai_msg = get_random_human_ai_pair()
return [
gr.update(value=human_msg),
gr.update(value=ai_msg),
gr.update(value="🎲", variant="secondary"), # Reset random button appearance
gr.update(value=""), # Clear score A
gr.update(value=""), # Clear critique A
gr.update(value=""), # Clear score B
gr.update(value=""), # Clear critique B
gr.update(interactive=False, variant="primary"), # Reset vote A
gr.update(interactive=False, variant="primary"), # Reset vote B
gr.update(interactive=False, variant="primary"), # Reset vote tie
gr.update(value="*Model: Hidden*"), # Reset model name A
gr.update(value="*Model: Hidden*"), # Reset model name B
]
with gr.Blocks(theme="default", css=CSS_STYLES) as demo:
gr.Markdown(MAIN_TITLE)
gr.Markdown(HOW_IT_WORKS)
# Hidden eval prompt that will always contain DEFAULT_EVAL_PROMPT
eval_prompt = gr.Textbox(
value=DEFAULT_EVAL_PROMPT,
visible=False
)
with gr.Tabs():
with gr.TabItem("Judge Arena"):
with gr.Row():
# Left side - Input section
with gr.Column(scale=1):
with gr.Group():
human_input = gr.TextArea(
label="👩 Human Input",
lines=10,
placeholder="Enter the human message here..."
)
with gr.Row():
generate_btn = gr.Button(
"Generate AI Response",
size="sm",
interactive=False
)
ai_response = gr.TextArea(
label="🤖 AI Response",
lines=15,
placeholder="Enter the AI response here..."
)
with gr.Row():
random_btn = gr.Button("🎲", scale=2)
send_btn = gr.Button(
value="Run judges",
variant="primary",
size="lg",
scale=8
)
# Right side - Model outputs
with gr.Column(scale=1):
gr.Markdown("### 👩‍⚖️ Judge A")
with gr.Group():
model_name_a = gr.Markdown("*Model: Hidden*")
with gr.Row():
with gr.Column(scale=1, min_width=100): # Fixed narrow width for score
score_a = gr.Textbox(label="Score", lines=6, interactive=False)
vote_a = gr.Button("Vote A", variant="primary", interactive=False)
with gr.Column(scale=9, min_width=400): # Wider width for critique
critique_a = gr.TextArea(label="Critique", lines=8, interactive=False)
# Tie button row
with gr.Row() as tie_button_row:
with gr.Column():
vote_tie = gr.Button("Tie", variant="primary", interactive=False)
gr.Markdown("### 🧑‍⚖️ Judge B")
with gr.Group():
model_name_b = gr.Markdown("*Model: Hidden*")
with gr.Row():
with gr.Column(scale=1, min_width=100): # Fixed narrow width for score
score_b = gr.Textbox(label="Score", lines=6, interactive=False)
vote_b = gr.Button("Vote B", variant="primary", interactive=False)
with gr.Column(scale=9, min_width=400): # Wider width for critique
critique_b = gr.TextArea(label="Critique", lines=8, interactive=False)
# Place Vote B button directly under Judge B
gr.Markdown("<br>")
# Add Evaluator Prompt Accordion
with gr.Accordion("📝 Evaluator Prompt", open=False):
gr.Markdown(f"```\n{DEFAULT_EVAL_PROMPT}\n```")
# Add spacing and acknowledgements at the bottom
gr.Markdown(ACKNOWLEDGEMENTS)
with gr.TabItem("Leaderboard"):
with gr.Row():
with gr.Column(scale=1):
show_preliminary = gr.Checkbox(
label="Reveal preliminary results",
value=True, # Checked by default
info="Show all models, including models with less few human ratings (< 500 votes)",
interactive=True
)
stats_display = gr.Markdown()
leaderboard_table = gr.Dataframe(
headers=["Model", "ELO", "95% CI", "Matches", "Organization", "License"],
datatype=["str", "number", "str", "number", "str", "str", "str"],
)
# Add change handler for checkbox
show_preliminary.change(
fn=refresh_leaderboard,
inputs=[show_preliminary],
outputs=[leaderboard_table, stats_display]
)
# Update the load event
demo.load(
fn=refresh_leaderboard,
inputs=[show_preliminary],
outputs=[leaderboard_table, stats_display]
)
with gr.TabItem("Policy"):
gr.Markdown(POLICY_CONTENT)
# Define state variables for model tracking
model_a_state = gr.State()
model_b_state = gr.State()
final_prompt_state = gr.State()
# Update variable inputs based on the eval prompt
#def update_variables(eval_prompt):
# variables = parse_variables(eval_prompt)
# updates = []
# for i in range(len(variable_rows)):
# var_row, var_input = variable_rows[i]
# if i < len(variables):
# var_name = variables[i]
# # Set the number of lines based on the variable name
# if var_name == "response":
# lines = 4 # Adjust this number as needed
# else:
# lines = 1 # Default to single line for other variables
# updates.extend(
# [
# gr.update(visible=True), # Show the variable row
# gr.update(
# label=var_name, visible=True, lines=lines
# ), # Update label and lines
# ]
# )
# else:
# updates.extend(
# [
# gr.update(visible=False), # Hide the variable row
# gr.update(value="", visible=False), # Clear value when hidden
# ]
# )
# return updates
#eval_prompt.change(
# fn=update_variables,
# inputs=eval_prompt,
# outputs=[item for sublist in variable_rows for item in sublist],
#)
# Regenerate button functionality
#regenerate_button.click(
# fn=regenerate_prompt,
# inputs=[model_a_state, model_b_state, eval_prompt, human_input, ai_response],
# outputs=[
# score_a,
# critique_a,
# score_b,
# critique_b,
# vote_a,
# vote_b,
# tie_button_row,
# model_name_a,
# model_name_b,
# model_a_state,
# model_b_state,
# ],
#)
# Update model names after responses are generated
def update_model_names(model_a, model_b):
return gr.update(value=f"*Model: {model_a}*"), gr.update(
value=f"*Model: {model_b}*"
)
# Store the last submitted prompt and variables for comparison
last_submission = gr.State({})
# Update the vote button click handlers
vote_a.click(
fn=vote,
inputs=[
gr.State("A"),
model_a_state,
model_b_state,
final_prompt_state,
score_a,
critique_a,
score_b,
critique_b,
],
outputs=[
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
send_btn,
random_btn,
gr.State(), # placeholder for success message
],
)
vote_b.click(
fn=vote,
inputs=[
gr.State("B"),
model_a_state,
model_b_state,
final_prompt_state,
score_a,
critique_a,
score_b,
critique_b,
],
outputs=[
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
send_btn,
random_btn,
gr.State(), # placeholder for success message
],
)
vote_tie.click(
fn=vote,
inputs=[
gr.State("Tie"),
model_a_state,
model_b_state,
final_prompt_state,
score_a,
critique_a,
score_b,
critique_b,
],
outputs=[
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
send_btn,
random_btn,
gr.State(), # placeholder for success message
],
)
# Update the send button handler to store the submitted inputs
def submit_and_store(prompt, *variables):
# Create a copy of the current submission
current_submission = {"prompt": prompt, "variables": variables}
# Get the responses
(
response_a,
response_b,
buttons_visible,
regen_visible,
model_a,
model_b,
final_prompt,
) = submit_prompt(prompt, *variables)
# Parse the responses
score_a, critique_a = parse_model_response(response_a)
score_b, critique_b = parse_model_response(response_b)
# Format scores with "/ 5"
score_a = f"{score_a} / 5"
score_b = f"{score_b} / 5"
# Update the last_submission state with the current values
last_submission.value = current_submission
return (
score_a,
critique_a,
score_b,
critique_b,
gr.update(interactive=True, variant="primary"), # vote_a
gr.update(interactive=True, variant="primary"), # vote_b
gr.update(interactive=True, variant="primary"), # vote_tie
model_a,
model_b,
final_prompt,
gr.update(value="*Model: Hidden*"),
gr.update(value="*Model: Hidden*"),
gr.update(
value="Regenerate judges",
variant="secondary",
interactive=True
),
gr.update(value="🎲"), # random_btn
)
send_btn.click(
fn=submit_and_store,
inputs=[eval_prompt, human_input, ai_response],
outputs=[
score_a,
critique_a,
score_b,
critique_b,
vote_a,
vote_b,
vote_tie,
model_a_state,
model_b_state,
final_prompt_state,
model_name_a,
model_name_b,
send_btn,
random_btn,
],
)
# Update the input change handlers to also disable regenerate button
# def handle_input_changes(prompt, *variables):
# """Enable send button and manage regenerate button based on input changes"""
# last_inputs = last_submission.value
# current_inputs = {"prompt": prompt, "variables": variables}
# inputs_changed = last_inputs != current_inputs
# return [
# gr.update(interactive=True), # send button always enabled
# gr.update(
# interactive=not inputs_changed
# ), # regenerate button disabled if inputs changed
# ]
# Update the change handlers for prompt and variables
#eval_prompt.change(
# fn=handle_input_changes,
# inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
# outputs=[send_btn, regenerate_button],
#)
# for _, var_input in variable_rows:
# var_input.change(
# fn=handle_input_changes,
# inputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
# outputs=[send_btn, regenerate_button],
# )
# Add click handlers for metric buttons
#outputs_list = [eval_prompt] + [var_input for _, var_input in variable_rows]
#custom_btn.click(fn=lambda: set_example_metric("Custom"), outputs=outputs_list)
#hallucination_btn.click(
# fn=lambda: set_example_metric("Hallucination"), outputs=outputs_list
#)
#precision_btn.click(fn=lambda: set_example_metric("Precision"), outputs=outputs_list)
#recall_btn.click(fn=lambda: set_example_metric("Recall"), outputs=outputs_list)
#coherence_btn.click(
# fn=lambda: set_example_metric("Logical_Coherence"), outputs=outputs_list
#)
#faithfulness_btn.click(
# fn=lambda: set_example_metric("Faithfulness"), outputs=outputs_list
#)
# Set default metric at startup
demo.load(
#fn=lambda: set_example_metric("Hallucination"),
#outputs=[eval_prompt] + [var_input for _, var_input in variable_rows],
)
# Add random button handler
random_btn.click(
fn=populate_random_example,
inputs=[],
outputs=[
human_input,
ai_response,
random_btn,
score_a,
critique_a,
score_b,
critique_b,
vote_a,
vote_b,
vote_tie,
model_name_a,
model_name_b,
]
)
# Add new input change handlers
def handle_input_change():
"""Reset UI state when inputs are changed"""
return [
gr.update(interactive=False), # vote_a
gr.update(interactive=False), # vote_b
gr.update(interactive=False), # vote_tie
gr.update(value="Run judges", variant="primary"), # send_btn
gr.update(value="🎲", variant="secondary"), # random_btn
]
# Update the change handlers for inputs
human_input.change(
fn=handle_input_change,
inputs=[],
outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn]
)
ai_response.change(
fn=handle_input_change,
inputs=[],
outputs=[vote_a, vote_b, vote_tie, send_btn, random_btn]
)
generate_btn.click(
fn=lambda msg: (
generate_ai_response(msg)[0], # Only take the response text
gr.update(
value="Generate AI Response", # Keep the label
interactive=False # Disable the button
)
),
inputs=[human_input],
outputs=[ai_response, generate_btn]
)
human_input.change(
fn=lambda x: gr.update(interactive=bool(x.strip())),
inputs=[human_input],
outputs=[generate_btn]
)
# Update the demo.load to include the random example population
demo.load(
fn=populate_random_example,
inputs=[],
outputs=[human_input, ai_response]
)
if __name__ == "__main__":
demo.launch()