import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = img.resize((512, 512)) img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Camel or a Llama ?" examples = ['llama_beauty.jpg'] interpretation='default' enable_queue=True gr.Interface( fn=predict, inputs=gr.Image(type="pil"), outputs=gr.Label(num_top_classes=3), title=title, examples=examples, ).launch(share=True)