Atom Bioworks
commited on
Create mcts.py
Browse files
mcts.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import timeit
|
3 |
+
import torch
|
4 |
+
from utils import rna2vec
|
5 |
+
from transformers import AutoTokenizer
|
6 |
+
|
7 |
+
#Node
|
8 |
+
class Node:
|
9 |
+
#init
|
10 |
+
def __init__(self, letter="", parent=None, root=False, last=False, depth=0, states=8):
|
11 |
+
self.exploitation_score = 0 # Exploitaion score
|
12 |
+
self.visits = 1 #How many visits
|
13 |
+
self.letter = letter #This node's letter
|
14 |
+
self.parent = parent #This node's parent node
|
15 |
+
self.states = states #How many states in node
|
16 |
+
self.children = np.array([None for _ in range(self.states)]) #This node's children
|
17 |
+
self.children_stat = np.zeros(self.states, dtype=bool) #Which stat are expanded
|
18 |
+
self.root = root # Is root? boolean
|
19 |
+
self.last = last # Is last node?
|
20 |
+
self.depth = depth # My depth
|
21 |
+
self.letters =["A_", "C_", "G_", "T_", "_A", "_C", "_G", "_T"]
|
22 |
+
|
23 |
+
|
24 |
+
#next_node
|
25 |
+
def next_node(self, child=0): #Return next node
|
26 |
+
assert self.children_stat[child] == True, "No child in here."
|
27 |
+
|
28 |
+
return self.children[child]
|
29 |
+
|
30 |
+
#back_parent
|
31 |
+
def back_parent(self): #Go back to parent
|
32 |
+
return self.parent, letters_map[self.letter]
|
33 |
+
|
34 |
+
#generate_child
|
35 |
+
def generate_child(self, child=0, last=False): #Generate child
|
36 |
+
assert self.children_stat[child] == False, "Already tree generated child at here"
|
37 |
+
|
38 |
+
self.children[child] = Node(letter=self.letters[child], parent=self, last=last, depth=self.depth+1, states=self.states) #New node
|
39 |
+
self.children_stat[child] = True #Stat = True
|
40 |
+
|
41 |
+
return self.children[child]
|
42 |
+
|
43 |
+
#backpropagation
|
44 |
+
def backpropagation(self, score=0):
|
45 |
+
self.visits += 1 # +1 to visit
|
46 |
+
if self.root == True: # if root, then stop
|
47 |
+
return self.exploitation_score
|
48 |
+
|
49 |
+
else:
|
50 |
+
self.exploitation_score += score #Add score to exploitation score
|
51 |
+
return self.parent.backpropagation(score=score) #Backpropagation to parent node
|
52 |
+
|
53 |
+
#UCT
|
54 |
+
def UCT(self):
|
55 |
+
return (self.exploitation_score / self.visits) + np.sqrt(np.log(self.parent.visits) / (2 * self.visits)) #UCT score
|
56 |
+
|
57 |
+
|
58 |
+
#MCTS
|
59 |
+
class MCTS:
|
60 |
+
def __init__(self, target_encoded, depth=20, iteration=1000, states=8, target_protein="", device='cpu', esm_alphabet=None):
|
61 |
+
self.states = states #How many states
|
62 |
+
self.root = Node(letter="", parent=None, root=True, last=False, states=self.states) #root node
|
63 |
+
self.depth = depth #Maximum depth
|
64 |
+
self.iteration = iteration #iteration for expand
|
65 |
+
self.target_protein = target_protein #target protein's amino acid sequence
|
66 |
+
self.device = device
|
67 |
+
self.encoded_targetprotein = target_encoded
|
68 |
+
self.base = ""
|
69 |
+
self.candidate = ""
|
70 |
+
self.letters =["A_", "C_", "G_", "T_", "_A", "_C", "_G", "_T"]
|
71 |
+
self.esm_alphabet = esm_alphabet
|
72 |
+
self.nt_tokenizer = AutoTokenizer.from_pretrained("InstaDeepAI/nucleotide-transformer-v2-50m-multi-species", trust_remote_code=True)
|
73 |
+
|
74 |
+
|
75 |
+
def make_candidate(self, classifier):
|
76 |
+
now = self.root
|
77 |
+
n = 0 # rounds
|
78 |
+
start_time = timeit.default_timer() #timer start
|
79 |
+
|
80 |
+
while len(self.base) < self.depth * 2: #If now is last node, then stop
|
81 |
+
n += 1
|
82 |
+
print(n, "round start!!!")
|
83 |
+
for _ in range(self.iteration):
|
84 |
+
now = self.select(classifier, now=now) #Select & Expand
|
85 |
+
|
86 |
+
terminate_time = timeit.default_timer()
|
87 |
+
time = terminate_time-start_time
|
88 |
+
|
89 |
+
base = self.find_best_subsequence() #Find best subsequence
|
90 |
+
self.base = base
|
91 |
+
|
92 |
+
# print("best subsequence:", base)
|
93 |
+
# print("Depth:", int(len(base)/2))
|
94 |
+
# print("%02d:%02d:%2f" % ((time//3600), (time//60)%60, time%60))
|
95 |
+
# print("=" * 80)
|
96 |
+
|
97 |
+
self.root = Node(letter="", parent=None, root=True, last=False, states=self.states, depth=len(self.base)/2)
|
98 |
+
now = self.root
|
99 |
+
|
100 |
+
self.candidate = self.base
|
101 |
+
|
102 |
+
return self.candidate
|
103 |
+
|
104 |
+
#selection
|
105 |
+
def select(self, classifier, now=None):
|
106 |
+
if now.depth == self.depth: #If last node, then stop
|
107 |
+
return self.root
|
108 |
+
|
109 |
+
next_node = 0
|
110 |
+
if np.sum(now.children_stat) == self.states: #If every child is expanded, then go to best child
|
111 |
+
best = 0
|
112 |
+
for i in range(self.states):
|
113 |
+
if best < now.children[i].UCT():
|
114 |
+
next_node = i
|
115 |
+
best = now.children[i].UCT()
|
116 |
+
|
117 |
+
else: #If not, then random
|
118 |
+
next_node = np.random.randint(0, self.states)
|
119 |
+
if now.children_stat[next_node] == False: #If selected child is not expanded, then expand and simulate
|
120 |
+
next_node = self.expand(classifier, child=next_node, now=now)
|
121 |
+
|
122 |
+
return self.root #start iteration at this node
|
123 |
+
|
124 |
+
return now.next_node(child=next_node)
|
125 |
+
|
126 |
+
#expand
|
127 |
+
def expand(self, classifier, child=None, now=None):
|
128 |
+
last = False
|
129 |
+
if now.depth == (self.depth-1): #If depth of this node is maximum depth -1, then next node is last
|
130 |
+
last = True
|
131 |
+
|
132 |
+
expanded_node = now.generate_child(child=child, last=last) #Expand
|
133 |
+
|
134 |
+
score = self.simulate(classifier, target=expanded_node) #Simulate
|
135 |
+
expanded_node.backpropagation(score=score) #Backporpagation
|
136 |
+
|
137 |
+
return child
|
138 |
+
|
139 |
+
#simulate
|
140 |
+
def simulate(self, classifier, target=None):
|
141 |
+
now = target #Target node
|
142 |
+
sim_seq = ""
|
143 |
+
|
144 |
+
while now.root != True: #Parent's letters
|
145 |
+
sim_seq = now.letter + sim_seq
|
146 |
+
now = now.parent
|
147 |
+
|
148 |
+
sim_seq = self.base + sim_seq
|
149 |
+
|
150 |
+
for i in range((self.depth * 2) - len(sim_seq)): #Random child letters
|
151 |
+
r = np.random.randint(0,self.states)
|
152 |
+
sim_seq += self.letters[r]
|
153 |
+
|
154 |
+
sim_seq = self.reconstruct(sim_seq)
|
155 |
+
scores = []
|
156 |
+
|
157 |
+
classifier.eval().to('cuda')
|
158 |
+
with torch.no_grad():
|
159 |
+
sim_seq = np.array([sim_seq])
|
160 |
+
|
161 |
+
apta_toks = self.nt_tokenizer.batch_encode_plus(sim_seq, return_tensors='pt', padding='max_length', max_length=275)['input_ids']
|
162 |
+
apta_attention_mask = apta_toks != self.nt_tokenizer.pad_token_id
|
163 |
+
prot_attention_mask = self.encoded_targetprotein != self.esm_alphabet.padding_idx
|
164 |
+
score, _, _, _ = classifier(apta_toks.to('cuda'), self.encoded_targetprotein.to('cuda'), apta_attention_mask.to('cuda'), prot_attention_mask.to('cuda'))
|
165 |
+
|
166 |
+
return score
|
167 |
+
|
168 |
+
#recommend
|
169 |
+
def get_candidate(self):
|
170 |
+
return self.reconstruct(self.candidate)
|
171 |
+
|
172 |
+
def find_best_subsequence(self):
|
173 |
+
now = self.root
|
174 |
+
stop = False
|
175 |
+
base = self.base
|
176 |
+
|
177 |
+
for _ in range((self.depth*2) - len(base)):
|
178 |
+
best = 0
|
179 |
+
next_node = 0
|
180 |
+
for j in range(self.states):
|
181 |
+
if now.children_stat[j] == True:
|
182 |
+
if best < now.children[j].UCT():
|
183 |
+
next_node = j
|
184 |
+
best = now.children[j].UCT()
|
185 |
+
|
186 |
+
now = now.next_node(child=next_node)
|
187 |
+
base += now.letter
|
188 |
+
|
189 |
+
# if current node has no expanded children, stop reconstructing.
|
190 |
+
if np.sum(now.children_stat) == 0:
|
191 |
+
break
|
192 |
+
|
193 |
+
return base
|
194 |
+
|
195 |
+
#reconstruct
|
196 |
+
def reconstruct(self, seq=""):
|
197 |
+
r_seq = ""
|
198 |
+
for i in range(0, len(seq), 2):
|
199 |
+
if seq[i] == '_':
|
200 |
+
r_seq = r_seq + seq[i+1]
|
201 |
+
else:
|
202 |
+
r_seq = seq[i] + r_seq
|
203 |
+
return r_seq
|
204 |
+
|
205 |
+
def reset(self):
|
206 |
+
self.base = ""
|
207 |
+
self.candidate = ""
|
208 |
+
self.root = Node(letter="", parent=None, root=True, last=False, states=self.states)
|