Ron Vallejo
Update app.py
f0368d0 verified
raw
history blame
4.84 kB
import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()
# initialize the client
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')#"hf_xxx" # Replace with your token
)
#Create supported models
model_links ={
"Meta-Llama-3.1-8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
"Gemma-7b-it": "google/gemma-7b-it",
}
#Pull info about the model to display
model_info ={
"Meta-Llama-3.1-8B":
{'description':"""The Llama (3.1) model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
\nIt was created by the [**Meta's AI**](https://llama.meta.com/) team and has over **8 billion parameters.** \n""",
'logo':'llama_logo.gif'},
"Mistral-7B-Instruct-v0.3":
{'description':"""The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3.\n \
\nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over **7 billion parameters.** \n""",
'logo':'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'},
"Gemma-7b-it":
{'description':"""Gemma is a family of lightweight, state-of-the-art open models from Google, built from the same research and technology used to create the Gemini models.\n \
\nThey are text-to-text, decoder-only large language models, available in English, with open weights, pre-trained variants, and instruction-tuned variants. \n"""},
}
#Random dog images for error message
random_dog = ["BlueLogoBox.jpg"]
# Define the available models
models =[key for key in model_links.keys()]
# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)
#Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))
# Create model description
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown(model_info[selected_model]['description'])
st.sidebar.image(model_info[selected_model]['logo'])
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
if "prev_option" not in st.session_state:
st.session_state.prev_option = selected_model
if st.session_state.prev_option != selected_model:
st.session_state.messages = []
st.write(f"Changed to {selected_model}")
st.session_state.prev_option = selected_model
#Pull in the model we want to use
repo_id = model_links[selected_model]
st.header(f'Liahona.AI')
st.markdown(f'_powered_ by ***:violet[{selected_model}]***')
# st.title(f'ChatBot Using {selected_model}')
# Set a default model
if selected_model not in st.session_state:
st.session_state[selected_model] = model_links[selected_model]
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input(f"Type message here..."):
# Display user message in chat message container
with st.chat_message("user"):
st.markdown(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display assistant response in chat message container
with st.chat_message("assistant"):
try:
stream = client.chat.completions.create(
model=model_links[selected_model],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temp_values,#0.5,
stream=True,
max_tokens=4000,
)
response = st.write_stream(stream)
except Exception as e:
# st.empty()
response = "πŸ˜΅β€πŸ’« Looks like someone unplugged something!\
\n Either the model space is being updated or something is down.\
\n\
\n Try again later. \
\n\
\n Here's a random pic of a 🐢:"
st.write(response)
random_dog_pick = 'https://random.dog/'+ random_dog[np.random.randint(len(random_dog))]
st.image(random_dog_pick)
st.write("This was the error message:")
st.write(e)
st.session_state.messages.append({"role": "assistant", "content": response})