Atreyu4EVR's picture
Update app.py
3815718 verified
import streamlit as st
import os
import torch
from openai import OpenAI
import numpy as np
import sys
from dotenv import load_dotenv
import random
from huggingface_hub import InferenceClient
# Load environment variables
load_dotenv()
# Constants
MAX_TOKENS = 4000
DEFAULT_TEMPERATURE = 0.5
# initialize the client
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
api_key=os.environ.get('API_KEY') # Replace with your token
)
# Create supported models
model_links = {
"Meta-Llama-3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct",
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
"Gemma-2-27b-it": "google/gemma-2-27b-it",
"Falcon-7b-Instruct": "tiiuae/falcon-7b-instruct",
}
# Random dog images for error message
random_dog_images = ["broken_llama3.jpeg"]
def reset_conversation():
'''
Resets Conversation
'''
st.session_state.conversation = []
st.session_state.messages = []
return None
st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button
def main():
st.header('Multi-Models')
# Sidebar for model selection and temperature
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys()))
temperature = st.sidebar.slider('Select a temperature value', 0.0, 1.0, DEFAULT_TEMPERATURE)
if "prev_option" not in st.session_state:
st.session_state.prev_option = selected_model
if st.session_state.prev_option != selected_model:
st.session_state.messages = []
# st.write(f"Changed to {selected_model}")
st.session_state.prev_option = selected_model
reset_conversation()
st.markdown(f'_powered_ by ***:violet[{selected_model}]***')
# Display model info and logo
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input and response
if prompt := st.chat_input("Type message here..."):
process_user_input(client, prompt, selected_model, temperature)
def process_user_input(client, prompt, selected_model, temperature):
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Generate and display assistant response
with st.chat_message("assistant"):
try:
stream = client.chat.completions.create(
model=model_links[selected_model],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temperature,
stream=True,
max_tokens=MAX_TOKENS,
)
response = st.write_stream(stream)
except Exception as e:
handle_error(e)
return
st.session_state.messages.append({"role": "assistant", "content": response})
def handle_error(error):
response = """πŸ˜΅β€πŸ’« Looks like someone unplugged something!
\n Either the model space is being updated or something is down."""
st.write(response)
random_dog_pick = random.choice(random_dog_images)
st.image(random_dog_pick)
st.write("This was the error message:")
st.write(str(error))
if __name__ == "__main__":
main()