Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -77,24 +77,57 @@ def setup_advanced_rag_pipeline(model_name):
|
|
77 |
# Set up language model
|
78 |
llm = HuggingFaceHub(repo_id=model_links[model_name], model_kwargs={"temperature": 0.5, "max_length": 4000})
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
template="Please write a passage to answer the question\nQuestion: {question}\nPassage:"
|
84 |
-
)
|
85 |
-
hyde_chain = LLMChain(llm=llm, prompt=hyde_prompt)
|
86 |
|
87 |
-
|
88 |
-
hypothetical_doc = hyde_chain.run(query)
|
89 |
-
hyde_embedding = embeddings.embed_query(hypothetical_doc)
|
90 |
-
return vectorstore.similarity_search_by_vector(hyde_embedding, k=3)
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
# Create RetrievalQA chain
|
100 |
qa_chain = RetrievalQA.from_chain_type(
|
|
|
77 |
# Set up language model
|
78 |
llm = HuggingFaceHub(repo_id=model_links[model_name], model_kwargs={"temperature": 0.5, "max_length": 4000})
|
79 |
|
80 |
+
def load_and_process_json(file_path):
|
81 |
+
with open(file_path, 'r') as file:
|
82 |
+
data = json.load(file)
|
|
|
|
|
|
|
83 |
|
84 |
+
documents = data.get("documents", [])
|
|
|
|
|
|
|
85 |
|
86 |
+
if not documents:
|
87 |
+
raise ValueError("No valid documents found in JSON file.")
|
88 |
+
|
89 |
+
# Create Document objects
|
90 |
+
doc_objects = [
|
91 |
+
Document(
|
92 |
+
page_content=doc["content"],
|
93 |
+
metadata={"title": doc["title"], "id": doc["id"]}
|
94 |
+
) for doc in documents
|
95 |
+
]
|
96 |
+
|
97 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP)
|
98 |
+
splits = text_splitter.split_documents(doc_objects)
|
99 |
+
|
100 |
+
return splits
|
101 |
+
|
102 |
+
def get_vectorstore(file_path):
|
103 |
+
# Check if vectorstore already exists
|
104 |
+
if os.path.exists(VECTORSTORE_PATH):
|
105 |
+
print("Loading existing vectorstore...")
|
106 |
+
return Chroma(persist_directory=VECTORSTORE_PATH, embedding_function=embeddings)
|
107 |
+
|
108 |
+
print("Creating new vectorstore...")
|
109 |
+
splits = load_and_process_json(file_path)
|
110 |
+
|
111 |
+
# Process in batches
|
112 |
+
vectorstore = None
|
113 |
+
for i in tqdm(range(0, len(splits), BATCH_SIZE), desc="Processing batches"):
|
114 |
+
batch = splits[i:i+BATCH_SIZE]
|
115 |
+
if vectorstore is None:
|
116 |
+
vectorstore = Chroma.from_documents(documents=batch, embedding=embeddings, persist_directory=VECTORSTORE_PATH)
|
117 |
+
else:
|
118 |
+
vectorstore.add_documents(documents=batch)
|
119 |
+
|
120 |
+
vectorstore.persist()
|
121 |
+
return vectorstore
|
122 |
+
|
123 |
+
def setup_rag_pipeline(file_path):
|
124 |
+
vectorstore = get_vectorstore(file_path)
|
125 |
+
return RetrievalQA.from_chain_type(
|
126 |
+
llm=llm,
|
127 |
+
chain_type="stuff",
|
128 |
+
retriever=vectorstore.as_retriever(search_kwargs={"k": RETRIEVER_K}),
|
129 |
+
return_source_documents=True
|
130 |
+
)
|
131 |
|
132 |
# Create RetrievalQA chain
|
133 |
qa_chain = RetrievalQA.from_chain_type(
|