Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,33 @@
|
|
1 |
-
import streamlit as st
|
2 |
import os
|
3 |
-
import
|
4 |
from openai import OpenAI
|
5 |
-
import
|
6 |
-
import sys
|
7 |
from dotenv import load_dotenv
|
8 |
-
import
|
9 |
-
from
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
# Load environment variables
|
12 |
load_dotenv()
|
13 |
|
|
|
|
|
|
|
|
|
14 |
# Constants
|
15 |
MAX_TOKENS = 4000
|
16 |
DEFAULT_TEMPERATURE = 0.5
|
17 |
|
18 |
-
#
|
19 |
-
|
20 |
client = OpenAI(
|
21 |
-
|
22 |
-
|
23 |
)
|
24 |
-
|
25 |
# Create supported models
|
26 |
model_links = {
|
27 |
"Meta-Llama-3.1-8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
@@ -30,40 +36,50 @@ model_links = {
|
|
30 |
"Falcon-7b-Instruct": "tiiuae/falcon-7b-instruct",
|
31 |
}
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def reset_conversation():
|
38 |
-
'''
|
39 |
-
Resets Conversation
|
40 |
-
'''
|
41 |
st.session_state.conversation = []
|
42 |
st.session_state.messages = []
|
43 |
-
return None
|
44 |
|
45 |
-
st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button
|
46 |
-
|
47 |
def main():
|
48 |
-
st.header('Multi-Models')
|
49 |
-
|
50 |
|
51 |
# Sidebar for model selection and temperature
|
52 |
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys()))
|
53 |
temperature = st.sidebar.slider('Select a temperature value', 0.0, 1.0, DEFAULT_TEMPERATURE)
|
54 |
|
|
|
|
|
55 |
if "prev_option" not in st.session_state:
|
56 |
st.session_state.prev_option = selected_model
|
57 |
|
58 |
if st.session_state.prev_option != selected_model:
|
59 |
st.session_state.messages = []
|
60 |
-
# st.write(f"Changed to {selected_model}")
|
61 |
st.session_state.prev_option = selected_model
|
62 |
reset_conversation()
|
63 |
|
64 |
st.markdown(f'_powered_ by ***:violet[{selected_model}]***')
|
65 |
|
66 |
-
# Display model info
|
67 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
68 |
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
|
69 |
|
@@ -76,15 +92,28 @@ def main():
|
|
76 |
with st.chat_message(message["role"]):
|
77 |
st.markdown(message["content"])
|
78 |
|
|
|
|
|
|
|
79 |
# Chat input and response
|
80 |
if prompt := st.chat_input("Type message here..."):
|
81 |
-
process_user_input(client, prompt, selected_model, temperature)
|
82 |
|
83 |
-
def process_user_input(client, prompt, selected_model, temperature):
|
84 |
# Display user message
|
85 |
with st.chat_message("user"):
|
86 |
st.markdown(prompt)
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
# Generate and display assistant response
|
90 |
with st.chat_message("assistant"):
|
@@ -110,7 +139,7 @@ def handle_error(error):
|
|
110 |
response = """π΅βπ« Looks like someone unplugged something!
|
111 |
\n Either the model space is being updated or something is down."""
|
112 |
st.write(response)
|
113 |
-
random_dog_pick = random.choice(
|
114 |
st.image(random_dog_pick)
|
115 |
st.write("This was the error message:")
|
116 |
st.write(str(error))
|
|
|
|
|
1 |
import os
|
2 |
+
import random
|
3 |
from openai import OpenAI
|
4 |
+
import streamlit as st
|
|
|
5 |
from dotenv import load_dotenv
|
6 |
+
from huggingface_hub import get_token
|
7 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
8 |
+
from langchain.indexes import VectorstoreIndexCreator
|
9 |
+
from langchain_community.document_loaders.hugging_face_dataset import HuggingFaceDatasetLoader
|
10 |
+
from langchain_huggingface.embeddings.huggingface_endpoint import HuggingFaceEndpointEmbeddings
|
11 |
+
from langchain.chains import RetrievalQA
|
12 |
+
from langchain_community.vectorstores import FAISS
|
13 |
|
14 |
# Load environment variables
|
15 |
load_dotenv()
|
16 |
|
17 |
+
api_key=os.environ.get('API_KEY')
|
18 |
+
|
19 |
+
get_token()
|
20 |
+
|
21 |
# Constants
|
22 |
MAX_TOKENS = 4000
|
23 |
DEFAULT_TEMPERATURE = 0.5
|
24 |
|
25 |
+
# Initialize the OpenAI client
|
|
|
26 |
client = OpenAI(
|
27 |
+
base_url="https://api-inference.huggingface.co/v1",
|
28 |
+
api_key=api_key
|
29 |
)
|
30 |
+
|
31 |
# Create supported models
|
32 |
model_links = {
|
33 |
"Meta-Llama-3.1-8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
|
|
36 |
"Falcon-7b-Instruct": "tiiuae/falcon-7b-instruct",
|
37 |
}
|
38 |
|
39 |
+
# Load documents and set up RAG pipeline
|
40 |
+
@st.cache_resource
|
41 |
+
def setup_rag_pipeline():
|
42 |
+
loader = HuggingFaceDatasetLoader(
|
43 |
+
path='Atreyu4EVR/General-BYUI-Data',
|
44 |
+
page_content_column='content'
|
45 |
+
)
|
46 |
+
documents = loader.load()
|
47 |
|
48 |
+
hf_embeddings = HuggingFaceEndpointEmbeddings(
|
49 |
+
model="sentence-transformers/all-MiniLM-L12-v2",
|
50 |
+
task="feature-extraction",
|
51 |
+
huggingfacehub_api_token=api_key
|
52 |
+
)
|
53 |
+
|
54 |
+
vector_store = FAISS.from_documents(documents, hf_embeddings)
|
55 |
+
retriever = vector_store.as_retriever()
|
56 |
+
|
57 |
+
return retriever
|
58 |
|
59 |
def reset_conversation():
|
|
|
|
|
|
|
60 |
st.session_state.conversation = []
|
61 |
st.session_state.messages = []
|
|
|
62 |
|
|
|
|
|
63 |
def main():
|
64 |
+
st.header('Multi-Models with RAG')
|
|
|
65 |
|
66 |
# Sidebar for model selection and temperature
|
67 |
selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys()))
|
68 |
temperature = st.sidebar.slider('Select a temperature value', 0.0, 1.0, DEFAULT_TEMPERATURE)
|
69 |
|
70 |
+
st.sidebar.button('Reset Chat', on_click=reset_conversation)
|
71 |
+
|
72 |
if "prev_option" not in st.session_state:
|
73 |
st.session_state.prev_option = selected_model
|
74 |
|
75 |
if st.session_state.prev_option != selected_model:
|
76 |
st.session_state.messages = []
|
|
|
77 |
st.session_state.prev_option = selected_model
|
78 |
reset_conversation()
|
79 |
|
80 |
st.markdown(f'_powered_ by ***:violet[{selected_model}]***')
|
81 |
|
82 |
+
# Display model info
|
83 |
st.sidebar.write(f"You're now chatting with **{selected_model}**")
|
84 |
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
|
85 |
|
|
|
92 |
with st.chat_message(message["role"]):
|
93 |
st.markdown(message["content"])
|
94 |
|
95 |
+
# Set up RAG pipeline
|
96 |
+
retriever = setup_rag_pipeline()
|
97 |
+
|
98 |
# Chat input and response
|
99 |
if prompt := st.chat_input("Type message here..."):
|
100 |
+
process_user_input(client, prompt, selected_model, temperature, retriever)
|
101 |
|
102 |
+
def process_user_input(client, prompt, selected_model, temperature, retriever):
|
103 |
# Display user message
|
104 |
with st.chat_message("user"):
|
105 |
st.markdown(prompt)
|
106 |
+
|
107 |
+
# Retrieve relevant documents
|
108 |
+
relevant_docs = retriever.get_relevant_documents(prompt)
|
109 |
+
context = "\n".join([doc.page_content for doc in relevant_docs])
|
110 |
+
|
111 |
+
# Prepare messages with context
|
112 |
+
messages = [
|
113 |
+
{"role": "system", "content": f"You are an AI assistant. Use the following context to answer the user's question: {context}"},
|
114 |
+
{"role": "user", "content": prompt}
|
115 |
+
]
|
116 |
+
st.session_state.messages.extend(messages)
|
117 |
|
118 |
# Generate and display assistant response
|
119 |
with st.chat_message("assistant"):
|
|
|
139 |
response = """π΅βπ« Looks like someone unplugged something!
|
140 |
\n Either the model space is being updated or something is down."""
|
141 |
st.write(response)
|
142 |
+
random_dog_pick = random.choice(["broken_llama3.jpeg"])
|
143 |
st.image(random_dog_pick)
|
144 |
st.write("This was the error message:")
|
145 |
st.write(str(error))
|