import streamlit as st import os import torch from openai import OpenAI import numpy as np import sys from dotenv import load_dotenv import random from huggingface_hub import InferenceClient # Load environment variables load_dotenv() # Constants MAX_TOKENS = 4000 DEFAULT_TEMPERATURE = 0.5 # initialize the client client = OpenAI( base_url="https://api-inference.huggingface.co/v1", api_key=os.environ.get('API_KEY') # Replace with your token ) # Create supported models model_links = { "Meta-Llama-3.1-70B-Instruct": "meta-llama/Llama-3.1-70B-Instruct", "Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3", "Gemma-2-27b-it": "google/gemma-2-27b-it", "Falcon-7b-Instruct": "tiiuae/falcon-7b-instruct", } # Random dog images for error message random_dog_images = ["broken_llama3.jpeg"] def reset_conversation(): ''' Resets Conversation ''' st.session_state.conversation = [] st.session_state.messages = [] return None st.sidebar.button('Reset Chat', on_click=reset_conversation) #Reset button def main(): st.header('Multi-Models') # Sidebar for model selection and temperature selected_model = st.sidebar.selectbox("Select Model", list(model_links.keys())) temperature = st.sidebar.slider('Select a temperature value', 0.0, 1.0, DEFAULT_TEMPERATURE) if "prev_option" not in st.session_state: st.session_state.prev_option = selected_model if st.session_state.prev_option != selected_model: st.session_state.messages = [] # st.write(f"Changed to {selected_model}") st.session_state.prev_option = selected_model reset_conversation() st.markdown(f'_powered_ by ***:violet[{selected_model}]***') # Display model info and logo st.sidebar.write(f"You're now chatting with **{selected_model}**") st.sidebar.markdown("*Generated content may be inaccurate or false.*") # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"]): st.markdown(message["content"]) # Chat input and response if prompt := st.chat_input("Type message here..."): process_user_input(client, prompt, selected_model, temperature) def process_user_input(client, prompt, selected_model, temperature): # Display user message with st.chat_message("user"): st.markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) # Generate and display assistant response with st.chat_message("assistant"): try: stream = client.chat.completions.create( model=model_links[selected_model], messages=[ {"role": m["role"], "content": m["content"]} for m in st.session_state.messages ], temperature=temperature, stream=True, max_tokens=MAX_TOKENS, ) response = st.write_stream(stream) except Exception as e: handle_error(e) return st.session_state.messages.append({"role": "assistant", "content": response}) def handle_error(error): response = """😵‍💫 Looks like someone unplugged something! \n Either the model space is being updated or something is down.""" st.write(response) random_dog_pick = random.choice(random_dog_images) st.image(random_dog_pick) st.write("This was the error message:") st.write(str(error)) if __name__ == "__main__": main()