Spaces:
Sleeping
Sleeping
Aumkeshchy2003
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
import pytesseract
|
3 |
+
from PIL import Image
|
4 |
+
import re
|
5 |
+
import gradio as gr
|
6 |
+
from transformers import AutoProcessor, AutoModelForTextToSpectrogram, SpeechT5HifiGan
|
7 |
+
from datasets import load_dataset
|
8 |
+
import torch
|
9 |
+
import soundfile as sf
|
10 |
+
|
11 |
+
def tesseract_ocr(filepath: str) -> str:
|
12 |
+
image = Image.open(filepath)
|
13 |
+
combined_languages = 'eng+hin'
|
14 |
+
extracted_text = pytesseract.image_to_string(image=image, lang=combined_languages)
|
15 |
+
return extracted_text
|
16 |
+
|
17 |
+
def search_and_highlight(text: str, keyword: str) -> str:
|
18 |
+
if keyword:
|
19 |
+
highlighted_text = re.sub(f"({keyword})", r"<mark>\1</mark>", text, flags=re.IGNORECASE)
|
20 |
+
return highlighted_text
|
21 |
+
return text
|
22 |
+
|
23 |
+
def ocr_and_tts(filepath: str, keyword: str) -> (str, str):
|
24 |
+
if filepath is None:
|
25 |
+
return "Please upload an image.", None
|
26 |
+
|
27 |
+
# OCR and keyword highlighting
|
28 |
+
extracted_text = tesseract_ocr(filepath)
|
29 |
+
highlighted_text = search_and_highlight(extracted_text, keyword)
|
30 |
+
|
31 |
+
# Convert text to speech
|
32 |
+
audio_path = text_to_speech(extracted_text)
|
33 |
+
|
34 |
+
return highlighted_text, audio_path
|
35 |
+
|
36 |
+
# Load model
|
37 |
+
processor = AutoProcessor.from_pretrained("Aumkeshchy2003/speecht5_finetuned_Aumkesh_English_tts")
|
38 |
+
model = AutoModelForTextToSpectrogram.from_pretrained("Aumkeshchy2003/speecht5_finetuned_Aumkesh_English_tts")
|
39 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
|
40 |
+
|
41 |
+
# Load speaker embedding
|
42 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
43 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
44 |
+
|
45 |
+
# Move models to GPU
|
46 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
47 |
+
model = model.to(device)
|
48 |
+
vocoder = vocoder.to(device)
|
49 |
+
speaker_embeddings = speaker_embeddings.to(device)
|
50 |
+
|
51 |
+
@torch.inference_mode()
|
52 |
+
def text_to_speech(text: str) -> str:
|
53 |
+
inputs = processor(text=text, return_tensors="pt").to(device)
|
54 |
+
speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
|
55 |
+
output_path = "output.wav"
|
56 |
+
sf.write(output_path, speech.cpu().numpy(), samplerate=16000)
|
57 |
+
return output_path
|
58 |
+
|
59 |
+
demo = gr.Interface(
|
60 |
+
fn=ocr_and_tts,
|
61 |
+
inputs=[
|
62 |
+
gr.Image(type="filepath", label="Upload Image for OCR"),
|
63 |
+
gr.Textbox(label="Keyword to Highlight", placeholder="Enter a keyword...")
|
64 |
+
],
|
65 |
+
outputs=[
|
66 |
+
gr.HTML(label="Extracted and Highlighted Text"),
|
67 |
+
gr.Audio(label="Generated Speech")
|
68 |
+
],
|
69 |
+
title="OCR to TTS",
|
70 |
+
description="Upload an image for OCR. The extracted text will be highlighted if a keyword is provided and converted to speech."
|
71 |
+
)
|
72 |
+
|
73 |
+
if __name__ == "__main__":
|
74 |
+
demo.launch()
|