from typing import List import pytesseract from PIL import Image import re import gradio as gr from transformers import AutoProcessor, AutoModelForTextToSpectrogram, SpeechT5HifiGan from datasets import load_dataset import torch import soundfile as sf def tesseract_ocr(filepath: str) -> str: image = Image.open(filepath) combined_languages = 'eng+hin' extracted_text = pytesseract.image_to_string(image=image, lang=combined_languages) return extracted_text def search_and_highlight(text: str, keyword: str) -> str: if keyword: highlighted_text = re.sub(f"({keyword})", r"\1", text, flags=re.IGNORECASE) return highlighted_text return text def ocr_and_tts(filepath: str, keyword: str) -> (str, str): if filepath is None: return "Please upload an image.", None # OCR and keyword highlighting extracted_text = tesseract_ocr(filepath) highlighted_text = search_and_highlight(extracted_text, keyword) # Convert text to speech audio_path = text_to_speech(extracted_text) return highlighted_text, audio_path # Load model processor = AutoProcessor.from_pretrained("Aumkeshchy2003/speecht5_finetuned_Aumkesh_English_tts") model = AutoModelForTextToSpectrogram.from_pretrained("Aumkeshchy2003/speecht5_finetuned_Aumkesh_English_tts") vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan") # Load speaker embedding embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) # Move models to GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) vocoder = vocoder.to(device) speaker_embeddings = speaker_embeddings.to(device) @torch.inference_mode() def text_to_speech(text: str) -> str: inputs = processor(text=text, return_tensors="pt").to(device) speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder) output_path = "output.wav" sf.write(output_path, speech.cpu().numpy(), samplerate=16000) return output_path demo = gr.Interface( fn=ocr_and_tts, inputs=[ gr.Image(type="filepath", label="Upload Image for OCR"), gr.Textbox(label="Keyword to Highlight", placeholder="Enter a keyword...") ], outputs=[ gr.HTML(label="Extracted and Highlighted Text"), gr.Audio(label="Generated Speech") ], title="OCR to TTS", description="Upload an image for OCR. The extracted text will be highlighted if a keyword is provided and converted to speech." ) if __name__ == "__main__": demo.launch()