Spaces:
Sleeping
Sleeping
File size: 1,629 Bytes
04c7dbc fb7988f e604d7f fb7988f 04c7dbc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import gradio as gr
from PIL import Image
import pytesseract
import re
def tesseract_ocr(filepath: str, languages: List[str]):
image = Image.open(filepath)
return pytesseract.image_to_string(image=image, lang=', '.join(languages))
title = "Tesseract OCR"
description = "Gradio demo for Tesseract. Tesseract is an open source text recognition (OCR) Engine."
article = "<p style='text-align: center'><a href='https://tesseract-ocr.github.io/' target='_blank'>Tesseract documentation</a> | <a href='https://github.com/tesseract-ocr/tesseract' target='_blank'>Github Repo</a></p>"
examples = [
['examples/eurotext.png', ['eng']],
['examples/tesseract_sample.png', ['jpn', 'eng']],
['examples/chi.jpg', ['HanS', 'HanT']]
]
def search_and_highlight(text, keyword):
highlighted_text = re.sub(f"({keyword})", r"<mark>\1</mark>", text, flags=re.IGNORECASE)
return highlighted_text
def ocr_and_search(image, keyword):
if image is None:
return "Please upload an image."
extracted_text = perform_ocr(image)
if keyword:
highlighted_text = search_and_highlight(extracted_text, keyword)
return highlighted_text
else:
return extracted_text
iface = gr.Interface(
fn=ocr_and_search,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(label="Enter keyword to search (optional)")
],
outputs=gr.HTML(label="Extracted and Highlighted Text"),
title="OCR and Keyword Search",
description="Upload an image for OCR processing and search for keywords in the extracted text."
)
iface.launch()
|