Spaces:
Running
Running
File size: 11,296 Bytes
b8cdbfb f893655 b8cdbfb f893655 b8cdbfb f893655 b8cdbfb f893655 b8cdbfb f893655 b8cdbfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
from typing import List, Union, Any, Optional, Dict
import uuid
import re
from datetime import date
import asyncio
from collections import defaultdict
import os
from langchain.agents import Tool, AgentExecutor, LLMSingleActionAgent, AgentOutputParser
from langchain.prompts import StringPromptTemplate
from langchain import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.schema import AgentAction, AgentFinish
from langchain.callbacks import get_openai_callback
from langchain.callbacks.base import AsyncCallbackHandler
from langchain.callbacks.manager import AsyncCallbackManager
from langchain.base_language import BaseLanguageModel
from autoagents.tools.tools import search_tool, note_tool, rewrite_search_query
from autoagents.utils.logger import InteractionsLogger
# Set up the base template
template = """
We are working together to satisfy the user's original goal step-by-step. Play to your strengths as an LLM.
Make sure the plan is achievable using the
available tools. You SHOULD directly produce a `Final Answer:` when you
think you have good-enough information to achieve the Goal. The final answer should be descriptive should be descriptive, encompassing all relevant details..
Today is {today}.
## Goal:
{input}
If you require assistance or additional information, you should use *only* one of the following tools:
{tools}.
## Output format
You MUST produce Output in the following format:
Thought: you should always think about what to do when you think you have not achieved the Goal.
Reasoning: reasoning
Plan:
- short bulleted
- list that conveys
- next-step plan
Action: the action to take, should be ONE OF {tool_names}
Action Input: the input to the Action
Observation: the result of the Action
... (this Thought/Reasoning/Plan/Action/Action Input/Observation can repeat N
times until there is a Final Answer)
Final Answer: the final answer to achieve the original Goal which can be the
only output or when you have no Action to do next.
## History
{agent_scratchpad}
Do not repeat any past actions in History, because you will not get additional information.
If the last action is search, then you should use notepad to keep critical information.
If you have gathered all information in your plannings to satisfy the user's original goal, then respond immediately as the Final Answer.
"""
# Set up a prompt template
class CustomPromptTemplate(StringPromptTemplate):
# The template to use
template: str
# The list of tools available
tools: List[Tool]
ialogger: InteractionsLogger
def format(self, **kwargs) -> str:
# Get the intermediate steps (AgentAction, Observation tuples)
# Format them in a particular way
intermediate_steps = kwargs.pop("intermediate_steps")
outputs = ""
# Set the agent_scratchpad variable to that value
for action, observation in intermediate_steps[:-1]:
outputs += f"{action.log}\n"
if len(intermediate_steps) > 0:
action, observation = intermediate_steps[-1]
# self.ialogger.add_system({"action": action, "observation": observation})
if action.tool not in ("Search", "Notepad"):
raise Exception("Invalid tool requested by the model.")
if action.tool == "Notepad":
outputs += f"{action.log}\n"
outputs += f"Observation: {observation}\n"
elif action.tool == "Search":
current = "".join([f"{d}" for d in observation])
outputs += f"{action.log}\n"
outputs += f"Observation: {current}\n"
# Parse the output ofr the last step for the reasoning and plan
regex = r"Thought\s*\d*\s*:(.*?)\n(.*)"
match = re.search(regex, action.log, re.DOTALL)
thoughts = match.group(1).strip() if match else ""
regex = r"Reasoning\s*\d*\s*:(.*?)\n(.*)"
match = re.search(regex, action.log, re.DOTALL)
reasoning = match.group(1).strip() if match else ""
regex = r"Plan\s*\d*\s*:(.*?)\nAction(.*)"
match = re.search(regex, action.log, re.DOTALL)
plans = match.group(1).strip() if match else ""
self.ialogger.add_structured_data({"output":{"thoughts": thoughts,
"reasoning": reasoning,
"plans": plans,
"action": action.tool,
"action_input": action.tool_input,
"raw_output":action.log},
"observation": observation})
kwargs["agent_scratchpad"] = outputs
# Create a tools variable from the list of tools provided
kwargs["tools"] = "\n".join([f"{tool.name}: {tool.description}" for tool in self.tools])
# Create a list of tool names for the tools provided
kwargs["tool_names"] = ", ".join([tool.name for tool in self.tools])
kwargs["today"] = date.today()
final_prompt = self.template.format(**kwargs)
self.ialogger.add_system({"value": final_prompt})
return final_prompt
class CustomOutputParser(AgentOutputParser):
class Config:
arbitrary_types_allowed = True
ialogger: InteractionsLogger
llm: BaseLanguageModel
new_action_input: Optional[str]
action_history = defaultdict(set)
def parse(self, llm_output: str) -> Union[AgentAction, AgentFinish]:
self.ialogger.add_ai(llm_output)
# Check if agent should finish
if "Final Answer:" in llm_output:
final_answer = llm_output.split("Final Answer:")[-1].strip()
self.ialogger.add_structured_data({"output": {"action": "Final Answer",
"action_input": final_answer,
"raw_output": llm_output}})
return AgentFinish(
# Return values is generally always a dictionary with a single `output` key
# It is not recommended to try anything else at the moment :)
return_values={"output": final_answer},
log=llm_output,
)
# Parse out the action and action input
regex = r"Action\s*\d*\s*:(.*?)\nAction\s*\d*\s*Input\s*\d*\s*:[\s]*(.*)"
match = re.search(regex, llm_output, re.DOTALL)
if not match:
raise ValueError(f"Could not parse LLM output: `{llm_output}`")
action = match.group(1).strip()
action_input = match.group(2).strip().strip('"')
if action_input in self.action_history[action]:
new_action_input = rewrite_search_query(action_input,
self.action_history[action],
self.llm)
self.ialogger.add_message({"query_rewrite": True})
self.new_action_input = new_action_input
self.action_history[action].add(new_action_input)
return AgentAction(tool=action, tool_input=new_action_input, log=llm_output)
else:
# Return the action and action input
self.action_history[action].add(action_input)
return AgentAction(tool=action, tool_input=action_input, log=llm_output)
class ActionRunner:
def __init__(self,
outputq,
llm: BaseLanguageModel,
persist_logs: bool = False):
self.ialogger = InteractionsLogger(name=f"{uuid.uuid4().hex[:6]}", persist=persist_logs)
tools = [search_tool, note_tool]
prompt = CustomPromptTemplate(
template=template,
tools=tools,
input_variables=["input", "intermediate_steps"],
ialogger=self.ialogger)
output_parser = CustomOutputParser(ialogger=self.ialogger, llm=llm)
class MyCustomHandler(AsyncCallbackHandler):
def __init__(self):
pass
async def on_chain_end(self, outputs, **kwargs) -> None:
if "text" in outputs:
await outputq.put(outputs["text"])
async def on_agent_action(
self,
action: AgentAction,
*,
run_id: uuid.UUID,
parent_run_id: Optional[uuid.UUID] = None,
**kwargs: Any,
) -> None:
if (new_action_input := output_parser.new_action_input):
# Notify users
await outputq.put(RuntimeWarning(f"Action Input Rewritten: {new_action_input}"))
output_parser.new_action_input = None
async def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
*,
run_id: uuid.UUID,
parent_run_id: Optional[uuid.UUID] = None,
**kwargs: Any,
) -> None:
pass
async def on_tool_end(
self,
output: str,
*,
run_id: uuid.UUID,
parent_run_id: Optional[uuid.UUID] = None,
**kwargs: Any,
) -> None:
await outputq.put(output)
handler = MyCustomHandler()
llm_chain = LLMChain(llm=llm, prompt=prompt, callbacks=[handler])
tool_names = [tool.name for tool in tools]
for tool in tools:
tool.callbacks = [handler]
agent = LLMSingleActionAgent(
llm_chain=llm_chain,
output_parser=output_parser,
stop=["\nObservation:"],
allowed_tools=tool_names
)
callback_manager = AsyncCallbackManager([handler])
# Finally create the Executor
self.agent_executor = AgentExecutor.from_agent_and_tools(agent=agent,
tools=tools,
verbose=False,
callback_manager=callback_manager)
async def run(self, goal: str, outputq):
self.ialogger.set_goal(goal)
try:
with get_openai_callback() as cb:
output = await self.agent_executor.arun(goal)
self.ialogger.add_cost({"total_tokens": cb.total_tokens,
"prompt_tokens": cb.prompt_tokens,
"completion_tokens": cb.completion_tokens,
"total_cost": cb.total_cost,
"successful_requests": cb.successful_requests})
self.ialogger.save()
except Exception as e:
self.ialogger.add_message({"error": str(e)})
self.ialogger.save()
await outputq.put(e)
return
return output
|