import os from duckpy import Client from langchain import PromptTemplate, OpenAI, LLMChain from langchain.agents import Tool from langchain.base_language import BaseLanguageModel MAX_SEARCH_RESULTS = 20 # Number of search results to observe at a time search_description = """ Useful for when you need to ask with search. Use direct language and be EXPLICIT in what you want to search. ## Examples of incorrect use 1. Action: Search Action Input: "[name of bagel shop] menu" The Action Input cannot be None or empty. """ notepad_description = """ Useful for when you need to note-down specific information for later reference. Please provide full information you want to note-down in the Action Input and all future prompts will remember it. This is the mandatory tool after using the search tool. Using Notepad does not always lead to a final answer. ## Exampels of using notepad tool Action: Notepad Action Input: the information you want to note-down """ async def ddg(query: str): if query is None or query.lower().strip().strip('"') == "none" or query.lower().strip().strip('"') == "null": x = "The action input field is empty. Please provide a search query." return [x] else: client = Client() return client.search(query)[:MAX_SEARCH_RESULTS] async def notepad(x: str) -> str: return f"{[x]}" search_tool = Tool(name="Search", func=lambda x: x, coroutine=ddg, description=search_description) note_tool = Tool(name="Notepad", func=lambda x: x, coroutine=notepad, description=notepad_description) def rewrite_search_query(q: str, search_history, llm: BaseLanguageModel) -> str: history_string = '\n'.join(search_history) template ="""We are using the Search tool. # Previous queries: {history_string}. \n\n Rewrite query {action_input} to be different from the previous ones.""" prompt = PromptTemplate(template=template, input_variables=["action_input", "history_string"]) llm_chain = LLMChain(prompt=prompt, llm=llm) return llm_chain.predict(action_input=q, history_string=history_string)