File size: 5,591 Bytes
e1e6433 1d8d998 e1e6433 29ffb70 1d8d998 e1e6433 a26ffb7 599b5b5 a26ffb7 1d8d998 e1e6433 f2e74e9 80fb3d6 1d8d998 e1e6433 1d8d998 599b5b5 80fb3d6 a26ffb7 80fb3d6 a26ffb7 80fb3d6 a26ffb7 80fb3d6 a26ffb7 80fb3d6 e1e6433 1d8d998 80fb3d6 e1e6433 1d8d998 e1e6433 1d8d998 e1e6433 1d8d998 a26ffb7 29ffb70 4cf6b72 5eff273 e1e6433 1d8d998 381f849 1d8d998 4d2ba31 1d8d998 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from ultralyticsplus import YOLO
import cv2
import numpy as np
from transformers import pipeline
import requests
from io import BytesIO
import os
model = YOLO('50epoch-new-weapon.pt')
model2 = pipeline('image-classification','Kaludi/csgo-weapon-classification')
name = ['grenade','knife','missile','pistol','rifle']
image_directory = "/home/user/app/image"
video_directory = "/home/user/app/video"
# url_example="https://drive.google.com/file/d/1bBq0bNmJ5X83tDWCzdzHSYCdg-aUL4xO/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im1 = Image.open(BytesIO(r.content))
# url_example="https://drive.google.com/file/d/16Z7QzvZ99fbEPj1sls_jOCJBsC0h_dYZ/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im2 = Image.open(BytesIO(r.content))
# url_example="https://drive.google.com/file/d/13mjTMS3eR0AKYSbV-Fpb3fTBno_T42JN/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im3 = Image.open(BytesIO(r.content))
# url_example="https://drive.google.com/file/d/1-XpFsa_nz506Ul6grKElVJDu_Jl3KZIF/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im4 = Image.open(BytesIO(r.content))
# for i, r in enumerate(results):
# # Plot results image
# im_bgr = r.plot()
# im_rgb = im_bgr[..., ::-1] # Convert BGR to RGB
def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.3, iou_threshold: gr.Slider = 0.6):
results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
text = ""
name_weap = ""
box = results[0].boxes
for r in results:
im_array = r.plot()
im = Image.fromarray(im_array[..., ::-1])
for r in results:
conf = np.array(r.boxes.conf.cpu())
cls = np.array(r.boxes.cls.cpu())
cls = cls.astype(int)
xywh = np.array(r.boxes.xywh.cpu())
xywh = xywh.astype(int)
for con, cl, xy in zip(conf, cls, xywh):
cone = con.astype(float)
conef = round(cone,3)
conef = conef * 100
text += (f"Detected {name[cl]} with confidence {round(conef,1)}% at ({xy[0]},{xy[1]})\n")
if cl == 0:
name_weap += name[cl] + '\n'
elif cl == 1:
name_weap += name[cl] + '\n'
elif cl == 2:
name_weap += name[cl] + '\n'
elif cl == 3:
out = model2(image)
name_weap += out[0]["label"] + '\n'
elif cl == 4:
out = model2(image)
name_weap += out[0]["label"] + '\n'
# xywh = int(results.boxes.xywh)
# x = xywh[0]
# y = xywh[1]
return im, text, name_weap
inputs = [
gr.Image(type="pil", label="Input Image"),
gr.Slider(minimum=320, maximum=1280, value=640,
step=32, label="Image Size"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.3,
step=0.05, label="Confidence Threshold"),
gr.Slider(minimum=0.0, maximum=1.0, value=0.6,
step=0.05, label="IOU Threshold"),
]
outputs = [gr.Image( type="pil", label="Output Image"),
gr.Textbox(label="Result"),
gr.Textbox(label="Weapon Name")
]
examples = [[os.path.join(image_directory, "th (5).jpg"),640, 0.3, 0.6],
[os.path.join(image_directory, "th (8).jpg"),640, 0.3, 0.6],
[os.path.join(image_directory, "th (11).jpg"),640, 0.3, 0.6],
[os.path.join(image_directory, "th (3).jpg"),640, 0.3, 0.6],
[os.path.join(image_directory, "th.jpg"),640, 0.3, 0.6]
]
title = """Weapon Detection By Automata Intelligence
<br></br>"""
description = 'Image Size: Defines the image size for inference.\nConfidence Treshold: Sets the minimum confidence threshold for detections.\nIOU Treshold: Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Useful for reducing duplicates.'
def pil_to_cv2(pil_image):
open_cv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
return open_cv_image
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
pil_img = Image.fromarray(frame[..., ::-1])
result = model.predict(source=pil_img)
for r in result:
im_array = r.plot()
processed_frame = Image.fromarray(im_array[..., ::-1])
yield processed_frame
cap.release()
video_iface = gr.Interface(
fn=process_video,
inputs=[
gr.Video(label="Upload Video", interactive=True)
],
outputs=gr.Image(type="pil",label="Result"),
title=title,
description="Upload video for inference.",
examples=[[os.path.join(video_directory, "ExampleRifle.mp4")],
[os.path.join(video_directory, "Knife.mp4")],
]
)
image_iface = gr.Interface(fn=response2, inputs=inputs, outputs=outputs, examples=examples, title=title, description=description)
demo = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])
if __name__ == '__main__':
demo.launch() |