File size: 5,591 Bytes
e1e6433
 
 
1d8d998
e1e6433
 
 
29ffb70
 
1d8d998
e1e6433
a26ffb7
599b5b5
a26ffb7
1d8d998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e1e6433
 
 
 
 
 
 
 
 
f2e74e9
80fb3d6
 
 
1d8d998
e1e6433
 
1d8d998
 
 
 
599b5b5
80fb3d6
 
a26ffb7
 
80fb3d6
a26ffb7
80fb3d6
 
 
 
 
 
 
 
 
 
 
 
 
a26ffb7
 
80fb3d6
 
a26ffb7
80fb3d6
 
 
e1e6433
 
 
 
1d8d998
80fb3d6
e1e6433
 
 
1d8d998
e1e6433
 
 
 
 
 
 
 
1d8d998
e1e6433
 
 
 
1d8d998
 
 
a26ffb7
 
29ffb70
4cf6b72
 
5eff273
e1e6433
1d8d998
 
 
 
 
 
 
 
 
 
 
 
381f849
1d8d998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d2ba31
1d8d998
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import gradio as gr
import matplotlib.pyplot as plt
from PIL import Image
from ultralyticsplus import YOLO
import cv2
import numpy as np
from transformers import pipeline
import requests
from io import BytesIO
import os

model = YOLO('50epoch-new-weapon.pt')
model2 = pipeline('image-classification','Kaludi/csgo-weapon-classification')
name = ['grenade','knife','missile','pistol','rifle']
image_directory = "/home/user/app/image"
video_directory = "/home/user/app/video"

# url_example="https://drive.google.com/file/d/1bBq0bNmJ5X83tDWCzdzHSYCdg-aUL4xO/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im1 = Image.open(BytesIO(r.content))

# url_example="https://drive.google.com/file/d/16Z7QzvZ99fbEPj1sls_jOCJBsC0h_dYZ/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im2 = Image.open(BytesIO(r.content))

# url_example="https://drive.google.com/file/d/13mjTMS3eR0AKYSbV-Fpb3fTBno_T42JN/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im3 = Image.open(BytesIO(r.content))

# url_example="https://drive.google.com/file/d/1-XpFsa_nz506Ul6grKElVJDu_Jl3KZIF/view?usp=drive_link"
# url_example='https://drive.google.com/uc?id=' + url_example.split('/')[-2]
# r = requests.get(url_example)
# im4 = Image.open(BytesIO(r.content))
 # for i, r in enumerate(results):
      
 #    # Plot results image
 #      im_bgr = r.plot()  
 #      im_rgb = im_bgr[..., ::-1]  # Convert BGR to RGB


def response2(image: gr.Image = None,image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.3, iou_threshold: gr.Slider = 0.6):

    results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size)
                           
    text = ""
    name_weap = ""
    
    box = results[0].boxes

    for r in results:
        im_array = r.plot()
        im = Image.fromarray(im_array[..., ::-1])

    
    
    for r in results:
        conf = np.array(r.boxes.conf.cpu())
        cls = np.array(r.boxes.cls.cpu())
        cls = cls.astype(int)
        xywh = np.array(r.boxes.xywh.cpu())
        xywh = xywh.astype(int)  
      
        for con, cl, xy in zip(conf, cls, xywh):
            cone = con.astype(float)
            conef = round(cone,3)
            conef = conef * 100
            text += (f"Detected {name[cl]} with confidence {round(conef,1)}% at ({xy[0]},{xy[1]})\n")
            
            if cl == 0:
                name_weap += name[cl] + '\n'
            elif cl == 1:
                name_weap += name[cl] + '\n'
            elif cl == 2:
                name_weap += name[cl] + '\n'
            elif cl == 3:
                out = model2(image)
                name_weap += out[0]["label"] + '\n'
            elif cl == 4:
                out = model2(image)
                name_weap += out[0]["label"] + '\n'
      
    
    # xywh = int(results.boxes.xywh)
    # x = xywh[0]
    # y = xywh[1]
           
    return im, text, name_weap


inputs = [
    gr.Image(type="pil",  label="Input Image"),
    gr.Slider(minimum=320, maximum=1280, value=640,
                     step=32, label="Image Size"),
    gr.Slider(minimum=0.0, maximum=1.0, value=0.3,
                     step=0.05, label="Confidence Threshold"),
    gr.Slider(minimum=0.0, maximum=1.0, value=0.6,
                     step=0.05, label="IOU Threshold"),
]

outputs = [gr.Image( type="pil", label="Output Image"),
           gr.Textbox(label="Result"),
           gr.Textbox(label="Weapon Name")
          ]

examples = [[os.path.join(image_directory, "th (5).jpg"),640, 0.3, 0.6],
            [os.path.join(image_directory, "th (8).jpg"),640, 0.3, 0.6],
            [os.path.join(image_directory, "th (11).jpg"),640, 0.3, 0.6],
            [os.path.join(image_directory, "th (3).jpg"),640, 0.3, 0.6],
            [os.path.join(image_directory, "th.jpg"),640, 0.3, 0.6]
           ]
title = """Weapon Detection By Automata Intelligence
<br></br>"""
description = 'Image Size: Defines the image size for inference.\nConfidence Treshold: Sets the minimum confidence threshold for detections.\nIOU Treshold: Intersection Over Union (IoU) threshold for Non-Maximum Suppression (NMS). Useful for reducing duplicates.'


def pil_to_cv2(pil_image):
    open_cv_image = cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)
    return open_cv_image


def process_video(video_path):
    cap = cv2.VideoCapture(video_path)
    
    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break
        
        pil_img = Image.fromarray(frame[..., ::-1])  
        result = model.predict(source=pil_img)
        for r in result:
            im_array = r.plot()
            processed_frame = Image.fromarray(im_array[..., ::-1])  
        yield processed_frame
    cap.release()


video_iface = gr.Interface(
    fn=process_video,
    inputs=[
        gr.Video(label="Upload Video", interactive=True)
    ],
    outputs=gr.Image(type="pil",label="Result"),
    title=title,
    description="Upload video for inference.",
    examples=[[os.path.join(video_directory, "ExampleRifle.mp4")],
        [os.path.join(video_directory, "Knife.mp4")],
    ]
)


image_iface = gr.Interface(fn=response2, inputs=inputs, outputs=outputs, examples=examples, title=title, description=description)

demo = gr.TabbedInterface([image_iface, video_iface], ["Image Inference", "Video Inference"])

if __name__ == '__main__':
    demo.launch()