Spaces:
Running
Running
import cv2 | |
import gradio as gr | |
from PIL import Image | |
import numpy as np | |
import torch | |
import kornia as K | |
from kornia.contrib import FaceDetector, FaceDetectorResult | |
import time | |
device = torch.device('cpu') | |
face_detection = FaceDetector().to(device) | |
def scale_image(img: np.ndarray, size: int) -> np.ndarray: | |
h, w = img.shape[:2] | |
scale = 1. * size / w | |
return cv2.resize(img, (int(w * scale), int(h * scale))) | |
def apply_blur_face(img: torch.Tensor, img_vis: np.ndarray, det: FaceDetectorResult): | |
# crop the face | |
x1, y1 = det.xmin.int(), det.ymin.int() | |
x2, y2 = det.xmax.int(), det.ymax.int() | |
roi = img[..., y1:y2, x1:x2] | |
#print(roi.shape) | |
if roi.shape[-1]==0 or roi.shape[-2]==0: | |
return | |
# apply blurring and put back to the visualisation image | |
roi = K.filters.gaussian_blur2d(roi, (21, 21), (100., 100.)) | |
roi = K.color.rgb_to_bgr(roi) | |
img_vis[y1:y2, x1:x2] = K.tensor_to_image(roi) | |
def run(image): | |
image.thumbnail((1280, 1280)) | |
img_raw = np.array(image) | |
# preprocess | |
img = K.image_to_tensor(img_raw, keepdim=False).to(device) | |
img = K.color.bgr_to_rgb(img.float()) | |
with torch.no_grad(): | |
dets = face_detection(img) | |
dets = [FaceDetectorResult(o) for o in dets] | |
img_vis = img_raw.copy() | |
for b in dets: | |
if b.score < 0.5: | |
continue | |
apply_blur_face(img, img_vis, b) | |
return Image.fromarray(img_vis) | |
if __name__ == "__main__": | |
start = time.time() | |
for _ in range(100): | |
image = Image.open("./images/crowd.jpeg") | |
_ = run(image) | |
print('It took', (time.time()-start)/100, 'seconds.') |