import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import AutoTokenizer, VitsModel, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-tiny", device=device) #Тут добавил tiny, потому что модель станет более компактной translater = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru") # Инициализация модели для перевода текста на русский язык model = VitsModel.from_pretrained("facebook/mms-tts-rus") # Загрузка модели для генерации речи на русском языке tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus") # Загрузка токенизатора для модели def translate(audio, translater: pipeline = translater): # Определение функции для перевода аудио в текст outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) # Получение текстового представления аудио return translater(outputs['text'])[0]['translation_text'] # Возврат переведенного текста def synthesise(text: str, tokenizer: AutoTokenizer = tokenizer, model: VitsModel = model): # Определение функции для синтеза речи из текста inputs = tokenizer(text, return_tensors="pt") # Создание токенизированного представления текста # print(inputs) with torch.no_grad(): output = model(**inputs).waveform # Генерация аудиофайла из текста return output.cpu() # Возврат полученной речи def speech_to_speech_translation(audio): # Определение функции для перевода и синтеза речи translated_text = translate(audio) # Перевод аудио в текст synthesised_speech = synthesise(translated_text) # Генерация речи на русском языке из переведенного текста synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) # Преобразование и нормализация речи return 16000, synthesised_speech[0] # Возврат частоты дискретизации и синтезированной речи title = "Cascaded STST" description = """ Demo for cascaded speech-to-speech translation (STST), mapping from source speech in multi language to target speech in Russian. Demo uses OpenAI's [Whisper Tiny](https://huggingface.co/openai/whisper-tiny) model for speech translation, and Facebook's [mms-tts-rus](https://huggingface.co/acebook/mms-tts-rus) model for text-to-speech: ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() # Создание блока для интерфейса mic_translate = gr.Interface( # Создание интерфейса для микрофона fn=speech_to_speech_translation, # Используемая функция inputs=gr.Audio(source="microphone", type="filepath"), # Ввод с микрофона outputs=gr.Audio(label="Generated Speech", type="numpy"), # Вывод сгенерированной речи title=title, description=description, ) file_translate = gr.Interface( # Создание интерфейса для загрузки аудиофайла fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./test_2.wav"]], title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()