music_drums_separation / inference.py
Awell00's picture
feat!: add inference and utils files for model features and sound separation
d3a31f9 verified
raw
history blame
7.16 kB
import argparse
import time
import librosa
from tqdm import tqdm
import sys
import os
import glob
import torch
import numpy as np
import soundfile as sf
import torch.nn as nn
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
from utils import demix_track, demix_track_demucs, get_model_from_config
import warnings
warnings.filterwarnings("ignore")
def run_folder(model, args, config, device, verbose=False):
start_time = time.time()
model.eval()
all_mixtures_path = glob.glob(args.input_folder + '/*.*')
all_mixtures_path.sort()
print('Total files found: {}'.format(len(all_mixtures_path)))
instruments = config.training.instruments
if config.training.target_instrument is not None:
instruments = [config.training.target_instrument]
if not os.path.isdir(args.store_dir):
os.mkdir(args.store_dir)
if not verbose:
all_mixtures_path = tqdm(all_mixtures_path, desc="Total progress")
if args.disable_detailed_pbar:
detailed_pbar = False
else:
detailed_pbar = True
for path in all_mixtures_path:
print("Starting processing track: ", path)
if not verbose:
all_mixtures_path.set_postfix({'track': os.path.basename(path)})
try:
mix, sr = librosa.load(path, sr=44100, mono=False)
except Exception as e:
print('Cannot read track: {}'.format(path))
print('Error message: {}'.format(str(e)))
continue
# Convert mono to stereo if needed
if len(mix.shape) == 1:
mix = np.stack([mix, mix], axis=0)
mix_orig = mix.copy()
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
mono = mix.mean(0)
mean = mono.mean()
std = mono.std()
mix = (mix - mean) / std
if args.use_tta:
# orig, channel inverse, polarity inverse
track_proc_list = [mix.copy(), mix[::-1].copy(), -1. * mix.copy()]
else:
track_proc_list = [mix.copy()]
full_result = []
for single_track in track_proc_list:
mixture = torch.tensor(single_track, dtype=torch.float32)
if args.model_type == 'htdemucs':
waveforms = demix_track_demucs(config, model, mixture, device, pbar=detailed_pbar)
else:
waveforms = demix_track(config, model, mixture, device, pbar=detailed_pbar)
full_result.append(waveforms)
# Average all values in single dict
waveforms = full_result[0]
for i in range(1, len(full_result)):
d = full_result[i]
for el in d:
if i == 2:
waveforms[el] += -1.0 * d[el]
elif i == 1:
waveforms[el] += d[el][::-1].copy()
else:
waveforms[el] += d[el]
for el in waveforms:
waveforms[el] = waveforms[el] / len(full_result)
file_name, _ = os.path.splitext(os.path.basename(path))
song_dir = os.path.join(args.store_dir, file_name)
if not os.path.exists(song_dir):
os.makedirs(song_dir)
model_dir = os.path.join(song_dir, args.model_type)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
for instr in instruments:
estimates = waveforms[instr].T
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
estimates = estimates * std + mean
if args.flac_file:
output_file = os.path.join(model_dir, f"{file_name}_{instr}.flac")
subtype = 'PCM_16' if args.pcm_type == 'PCM_16' else 'PCM_24'
sf.write(output_file, estimates, sr, subtype=subtype)
else:
output_file = os.path.join(model_dir, f"{file_name}_{instr}.wav")
sf.write(output_file, estimates, sr, subtype='FLOAT')
# Output "instrumental", which is an inverse of 'vocals' (or first stem in list if 'vocals' absent)
if args.extract_instrumental:
if 'vocals' in instruments:
estimates = waveforms['vocals'].T
else:
estimates = waveforms[instruments[0]].T
if 'normalize' in config.inference:
if config.inference['normalize'] is True:
estimates = estimates * std + mean
if args.flac_file:
instrum_file_name = os.path.join(model_dir, f"{file_name}_instrumental.flac")
subtype = 'PCM_16' if args.pcm_type == 'PCM_16' else 'PCM_24'
sf.write(instrum_file_name, mix_orig.T - estimates, sr, subtype=subtype)
else:
instrum_file_name = os.path.join(model_dir, f"{file_name}_instrumental.wav")
sf.write(instrum_file_name, mix_orig.T - estimates, sr, subtype='FLOAT')
time.sleep(1)
print("Elapsed time: {:.2f} sec".format(time.time() - start_time))
def proc_folder_direct(model_type, config_path, start_check_point, input_folder, store_dir, device_ids=[0], extract_instrumental=False, disable_detailed_pbar=False, force_cpu=False, flac_file=False, pcm_type='PCM_24', use_tta=False):
device = "cpu"
if force_cpu:
device = "cpu"
elif torch.cuda.is_available():
print('CUDA is available, use --force_cpu to disable it.')
device = "cuda"
device = f'cuda:{device_ids}' if type(device_ids) == int else f'cuda:{device_ids[0]}'
elif torch.backends.mps.is_available():
device = "mps"
print("Using device: ", device)
model_load_start_time = time.time()
torch.backends.cudnn.benchmark = True
model, config = get_model_from_config(model_type, config_path)
if start_check_point != '':
print('Start from checkpoint: {}'.format(start_check_point))
if model_type == 'htdemucs':
state_dict = torch.load(start_check_point, map_location=device, weights_only=False)
if 'state' in state_dict:
state_dict = state_dict['state']
else:
state_dict = torch.load(start_check_point, map_location=device, weights_only=True)
model.load_state_dict(state_dict)
print("Instruments: {}".format(config.training.instruments))
if type(device_ids) != int:
model = nn.DataParallel(model, device_ids=device_ids)
model = model.to(device)
print("Model load time: {:.2f} sec".format(time.time() - model_load_start_time))
args = argparse.Namespace(
model_type=model_type,
config_path=config_path,
start_check_point=start_check_point,
input_folder=input_folder,
store_dir=store_dir,
device_ids=device_ids,
extract_instrumental=extract_instrumental,
disable_detailed_pbar=disable_detailed_pbar,
force_cpu=force_cpu,
flac_file=flac_file,
pcm_type=pcm_type,
use_tta=use_tta
)
run_folder(model, args, config, device, verbose=True)