Awell00's picture
feat!: add inference and utils files for model features and sound separation
d3a31f9 verified
raw
history blame
7.28 kB
import time
import numpy as np
import torch
import torch.nn as nn
import yaml
from ml_collections import ConfigDict
from omegaconf import OmegaConf
from tqdm import tqdm
def get_model_from_config(model_type, config_path):
with open(config_path) as f:
if model_type == 'htdemucs':
config = OmegaConf.load(config_path)
else:
config = ConfigDict(yaml.load(f, Loader=yaml.FullLoader))
if model_type == 'htdemucs':
from models.demucs4ht import get_model
model = get_model(config)
elif model_type == 'mel_band_roformer':
from models.bs_roformer import MelBandRoformer
model = MelBandRoformer(
**dict(config.model)
)
elif model_type == 'bs_roformer':
from models.bs_roformer import BSRoformer
model = BSRoformer(
**dict(config.model)
)
elif model_type == 'scnet':
from models.scnet import SCNet
model = SCNet(
**dict(config.model)
)
else:
print('Unknown model: {}'.format(model_type))
model = None
return model, config
def _getWindowingArray(window_size, fade_size):
fadein = torch.linspace(0, 1, fade_size)
fadeout = torch.linspace(1, 0, fade_size)
window = torch.ones(window_size)
window[-fade_size:] *= fadeout
window[:fade_size] *= fadein
return window
def demix_track(config, model, mix, device, pbar=False):
C = config.audio.chunk_size
N = config.inference.num_overlap
fade_size = C // 10
step = int(C // N)
border = C - step
batch_size = config.inference.batch_size
length_init = mix.shape[-1]
# Do pad from the beginning and end to account floating window results better
if length_init > 2 * border and (border > 0):
mix = nn.functional.pad(mix, (border, border), mode='reflect')
# windowingArray crossfades at segment boundaries to mitigate clicking artifacts
windowingArray = _getWindowingArray(C, fade_size)
with torch.cuda.amp.autocast(enabled=config.training.use_amp):
with torch.inference_mode():
if config.training.target_instrument is not None:
req_shape = (1, ) + tuple(mix.shape)
else:
req_shape = (len(config.training.instruments),) + tuple(mix.shape)
result = torch.zeros(req_shape, dtype=torch.float32)
counter = torch.zeros(req_shape, dtype=torch.float32)
i = 0
batch_data = []
batch_locations = []
progress_bar = tqdm(total=mix.shape[1], desc="Processing audio chunks", leave=False) if pbar else None
while i < mix.shape[1]:
# print(i, i + C, mix.shape[1])
part = mix[:, i:i + C].to(device)
length = part.shape[-1]
if length < C:
if length > C // 2 + 1:
part = nn.functional.pad(input=part, pad=(0, C - length), mode='reflect')
else:
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
batch_data.append(part)
batch_locations.append((i, length))
i += step
if len(batch_data) >= batch_size or (i >= mix.shape[1]):
arr = torch.stack(batch_data, dim=0)
x = model(arr)
window = windowingArray
if i - step == 0: # First audio chunk, no fadein
window[:fade_size] = 1
elif i >= mix.shape[1]: # Last audio chunk, no fadeout
window[-fade_size:] = 1
for j in range(len(batch_locations)):
start, l = batch_locations[j]
result[..., start:start+l] += x[j][..., :l].cpu() * window[..., :l]
counter[..., start:start+l] += window[..., :l]
batch_data = []
batch_locations = []
if progress_bar:
progress_bar.update(step)
if progress_bar:
progress_bar.close()
estimated_sources = result / counter
estimated_sources = estimated_sources.cpu().numpy()
np.nan_to_num(estimated_sources, copy=False, nan=0.0)
if length_init > 2 * border and (border > 0):
# Remove pad
estimated_sources = estimated_sources[..., border:-border]
if config.training.target_instrument is None:
return {k: v for k, v in zip(config.training.instruments, estimated_sources)}
else:
return {k: v for k, v in zip([config.training.target_instrument], estimated_sources)}
def demix_track_demucs(config, model, mix, device, pbar=False):
S = len(config.training.instruments)
C = config.training.samplerate * config.training.segment
N = config.inference.num_overlap
batch_size = config.inference.batch_size
step = C // N
# print(S, C, N, step, mix.shape, mix.device)
with torch.cuda.amp.autocast(enabled=config.training.use_amp):
with torch.inference_mode():
req_shape = (S, ) + tuple(mix.shape)
result = torch.zeros(req_shape, dtype=torch.float32)
counter = torch.zeros(req_shape, dtype=torch.float32)
i = 0
batch_data = []
batch_locations = []
progress_bar = tqdm(total=mix.shape[1], desc="Processing audio chunks", leave=False) if pbar else None
while i < mix.shape[1]:
# print(i, i + C, mix.shape[1])
part = mix[:, i:i + C].to(device)
length = part.shape[-1]
if length < C:
part = nn.functional.pad(input=part, pad=(0, C - length, 0, 0), mode='constant', value=0)
batch_data.append(part)
batch_locations.append((i, length))
i += step
if len(batch_data) >= batch_size or (i >= mix.shape[1]):
arr = torch.stack(batch_data, dim=0)
x = model(arr)
for j in range(len(batch_locations)):
start, l = batch_locations[j]
result[..., start:start+l] += x[j][..., :l].cpu()
counter[..., start:start+l] += 1.
batch_data = []
batch_locations = []
if progress_bar:
progress_bar.update(step)
if progress_bar:
progress_bar.close()
estimated_sources = result / counter
estimated_sources = estimated_sources.cpu().numpy()
np.nan_to_num(estimated_sources, copy=False, nan=0.0)
if S > 1:
return {k: v for k, v in zip(config.training.instruments, estimated_sources)}
else:
return estimated_sources
def sdr(references, estimates):
# compute SDR for one song
delta = 1e-7 # avoid numerical errors
num = np.sum(np.square(references), axis=(1, 2))
den = np.sum(np.square(references - estimates), axis=(1, 2))
num += delta
den += delta
return 10 * np.log10(num / den)