Spaces:
Sleeping
Sleeping
import spaces | |
import os | |
import random | |
import argparse | |
import torch | |
import gradio as gr | |
import numpy as np | |
import ChatTTS | |
from OpenVoice import se_extractor | |
from OpenVoice.api import ToneColorConverter | |
import soundfile | |
print("loading ChatTTS model...") | |
chat = ChatTTS.Chat() | |
chat.load_models() | |
def generate_seed(): | |
new_seed = random.randint(1, 100000000) | |
return { | |
"__type__": "update", | |
"value": new_seed | |
} | |
def chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, output_path=None): | |
torch.manual_seed(audio_seed_input) | |
rand_spk = torch.randn(768) | |
params_infer_code = { | |
'spk_emb': rand_spk, | |
'temperature': temperature, | |
'top_P': top_P, | |
'top_K': top_K, | |
} | |
params_refine_text = {'prompt': '[oral_2][laugh_0][break_6]'} | |
torch.manual_seed(text_seed_input) | |
if refine_text_flag: | |
if refine_text_input: | |
params_refine_text['prompt'] = refine_text_input | |
text = chat.infer(text, | |
skip_refine_text=False, | |
refine_text_only=True, | |
params_refine_text=params_refine_text, | |
params_infer_code=params_infer_code | |
) | |
print("Text has been refined!") | |
wav = chat.infer(text, | |
skip_refine_text=True, | |
params_refine_text=params_refine_text, | |
params_infer_code=params_infer_code | |
) | |
audio_data = np.array(wav[0]).flatten() | |
sample_rate = 24000 | |
text_data = text[0] if isinstance(text, list) else text | |
if output_path is None: | |
return [(sample_rate, audio_data), text_data] | |
else: | |
soundfile.write(output_path, audio_data, sample_rate) | |
return text_data | |
# OpenVoice Clone | |
ckpt_converter = 'OpenVoice/checkpoints/converter' | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device) | |
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth') | |
def generate_audio(text, audio_ref, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input): | |
save_path = "output.wav" | |
if audio_ref != "" : | |
# Run the base speaker tts | |
src_path = "tmp.wav" | |
text_data = chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, src_path) | |
print("Ready for voice cloning!") | |
source_se, audio_name = se_extractor.get_se(src_path, tone_color_converter, target_dir='processed', vad=True) | |
reference_speaker = audio_ref | |
target_se, audio_name = se_extractor.get_se(reference_speaker, tone_color_converter, target_dir='processed', vad=True) | |
print("Get voices segment!") | |
# Run the tone color converter | |
# convert from file | |
tone_color_converter.convert( | |
audio_src_path=src_path, | |
src_se=source_se, | |
tgt_se=target_se, | |
output_path=save_path) | |
else: | |
chat_tts(text, temperature, top_P, top_K, audio_seed_input, text_seed_input, refine_text_flag, refine_text_input, save_path) | |
print("Finished!") | |
return [save_path, text_data] | |
with gr.Blocks() as demo: | |
gr.Markdown("# <center>🥳 ChatTTS x OpenVoice 🥳</center>") | |
gr.Markdown("## <center>🌟 Make it sound super natural and switch it up to any voice you want, nailing the mood and tone also!🌟 </center>") | |
default_text = "Today a man knocked on my door and asked for a small donation toward the local swimming pool. I gave him a glass of water." | |
text_input = gr.Textbox(label="Input Text", lines=4, placeholder="Please Input Text...", value=default_text) | |
default_refine_text = "[oral_2][laugh_0][break_6]" | |
refine_text_input = gr.Textbox(label="Refine Prompt", lines=1, placeholder="Please Refine Prompt...", value=default_refine_text) | |
refine_text_checkbox = gr.Checkbox(label="Refine text", info="use oral_(0-9), laugh_(0-2), break_(0-7).'oral' means add filler words, 'laugh' means add laughter, and 'break' means add a pause.", value=True) | |
with gr.Column(): | |
voice_ref = gr.Audio(label="Reference Audio", type="filepath", value="Examples/speaker.mp3") | |
with gr.Row(): | |
temperature_slider = gr.Slider(minimum=0.00001, maximum=1.0, step=0.00001, value=0.3, label="Audio temperature") | |
top_p_slider = gr.Slider(minimum=0.1, maximum=0.9, step=0.05, value=0.7, label="top_P") | |
top_k_slider = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_K") | |
with gr.Row(): | |
audio_seed_input = gr.Number(value=42, label="Speaker Seed") | |
generate_audio_seed = gr.Button("\U0001F3B2") | |
text_seed_input = gr.Number(value=42, label="Text Seed") | |
generate_text_seed = gr.Button("\U0001F3B2") | |
generate_button = gr.Button("Generate") | |
text_output = gr.Textbox(label="Refined Text", interactive=False) | |
audio_output = gr.Audio(label="Output Audio") | |
generate_audio_seed.click(generate_seed, | |
inputs=[], | |
outputs=audio_seed_input) | |
generate_text_seed.click(generate_seed, | |
inputs=[], | |
outputs=text_seed_input) | |
generate_button.click(generate_audio, | |
inputs=[text_input, voice_ref, temperature_slider, top_p_slider, top_k_slider, audio_seed_input, text_seed_input, refine_text_checkbox, refine_text_input], | |
outputs=[audio_output,text_output]) | |
parser = argparse.ArgumentParser(description='ChatTTS-OpenVoice Launch') | |
parser.add_argument('--server_name', type=str, default='0.0.0.0', help='Server name') | |
parser.add_argument('--server_port', type=int, default=8080, help='Server port') | |
args = parser.parse_args() | |
# demo.launch(server_name=args.server_name, server_port=args.server_port, inbrowser=True) | |
if __name__ == '__main__': | |
demo.launch() |