wanderful-voice / TTS /bin /tune_wavegrad.py
Shadhil's picture
voice-clone with single audio sample input
9b2107c
raw
history blame
3.73 kB
"""Search a good noise schedule for WaveGrad for a given number of inference iterations"""
import argparse
from itertools import product as cartesian_product
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from TTS.config import load_config
from TTS.utils.audio import AudioProcessor
from TTS.vocoder.datasets.preprocess import load_wav_data
from TTS.vocoder.datasets.wavegrad_dataset import WaveGradDataset
from TTS.vocoder.models import setup_model
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, help="Path to model checkpoint.")
parser.add_argument("--config_path", type=str, help="Path to model config file.")
parser.add_argument("--data_path", type=str, help="Path to data directory.")
parser.add_argument("--output_path", type=str, help="path for output file including file name and extension.")
parser.add_argument(
"--num_iter",
type=int,
help="Number of model inference iterations that you like to optimize noise schedule for.",
)
parser.add_argument("--use_cuda", action="store_true", help="enable CUDA.")
parser.add_argument("--num_samples", type=int, default=1, help="Number of datasamples used for inference.")
parser.add_argument(
"--search_depth",
type=int,
default=3,
help="Search granularity. Increasing this increases the run-time exponentially.",
)
# load config
args = parser.parse_args()
config = load_config(args.config_path)
# setup audio processor
ap = AudioProcessor(**config.audio)
# load dataset
_, train_data = load_wav_data(args.data_path, 0)
train_data = train_data[: args.num_samples]
dataset = WaveGradDataset(
ap=ap,
items=train_data,
seq_len=-1,
hop_len=ap.hop_length,
pad_short=config.pad_short,
conv_pad=config.conv_pad,
is_training=True,
return_segments=False,
use_noise_augment=False,
use_cache=False,
verbose=True,
)
loader = DataLoader(
dataset,
batch_size=1,
shuffle=False,
collate_fn=dataset.collate_full_clips,
drop_last=False,
num_workers=config.num_loader_workers,
pin_memory=False,
)
# setup the model
model = setup_model(config)
if args.use_cuda:
model.cuda()
# setup optimization parameters
base_values = sorted(10 * np.random.uniform(size=args.search_depth))
print(f" > base values: {base_values}")
exponents = 10 ** np.linspace(-6, -1, num=args.num_iter)
best_error = float("inf")
best_schedule = None # pylint: disable=C0103
total_search_iter = len(base_values) ** args.num_iter
for base in tqdm(cartesian_product(base_values, repeat=args.num_iter), total=total_search_iter):
beta = exponents * base
model.compute_noise_level(beta)
for data in loader:
mel, audio = data
y_hat = model.inference(mel.cuda() if args.use_cuda else mel)
if args.use_cuda:
y_hat = y_hat.cpu()
y_hat = y_hat.numpy()
mel_hat = []
for i in range(y_hat.shape[0]):
m = ap.melspectrogram(y_hat[i, 0])[:, :-1]
mel_hat.append(torch.from_numpy(m))
mel_hat = torch.stack(mel_hat)
mse = torch.sum((mel - mel_hat) ** 2).mean()
if mse.item() < best_error:
best_error = mse.item()
best_schedule = {"beta": beta}
print(f" > Found a better schedule. - MSE: {mse.item()}")
np.save(args.output_path, best_schedule)