Spaces:
Runtime error
Runtime error
import json | |
import random | |
from typing import Any, Dict, List, Tuple, Union | |
import fsspec | |
import numpy as np | |
import torch | |
from TTS.config import load_config | |
from TTS.encoder.utils.generic_utils import setup_encoder_model | |
from TTS.utils.audio import AudioProcessor | |
def load_file(path: str): | |
if path.endswith(".json"): | |
with fsspec.open(path, "r") as f: | |
return json.load(f) | |
elif path.endswith(".pth"): | |
with fsspec.open(path, "rb") as f: | |
return torch.load(f, map_location="cpu") | |
else: | |
raise ValueError("Unsupported file type") | |
def save_file(obj: Any, path: str): | |
if path.endswith(".json"): | |
with fsspec.open(path, "w") as f: | |
json.dump(obj, f, indent=4) | |
elif path.endswith(".pth"): | |
with fsspec.open(path, "wb") as f: | |
torch.save(obj, f) | |
else: | |
raise ValueError("Unsupported file type") | |
class BaseIDManager: | |
"""Base `ID` Manager class. Every new `ID` manager must inherit this. | |
It defines common `ID` manager specific functions. | |
""" | |
def __init__(self, id_file_path: str = ""): | |
self.name_to_id = {} | |
if id_file_path: | |
self.load_ids_from_file(id_file_path) | |
def _load_json(json_file_path: str) -> Dict: | |
with fsspec.open(json_file_path, "r") as f: | |
return json.load(f) | |
def _save_json(json_file_path: str, data: dict) -> None: | |
with fsspec.open(json_file_path, "w") as f: | |
json.dump(data, f, indent=4) | |
def set_ids_from_data(self, items: List, parse_key: str) -> None: | |
"""Set IDs from data samples. | |
Args: | |
items (List): Data sampled returned by `load_tts_samples()`. | |
""" | |
self.name_to_id = self.parse_ids_from_data(items, parse_key=parse_key) | |
def load_ids_from_file(self, file_path: str) -> None: | |
"""Set IDs from a file. | |
Args: | |
file_path (str): Path to the file. | |
""" | |
self.name_to_id = load_file(file_path) | |
def save_ids_to_file(self, file_path: str) -> None: | |
"""Save IDs to a json file. | |
Args: | |
file_path (str): Path to the output file. | |
""" | |
save_file(self.name_to_id, file_path) | |
def get_random_id(self) -> Any: | |
"""Get a random embedding. | |
Args: | |
Returns: | |
np.ndarray: embedding. | |
""" | |
if self.name_to_id: | |
return self.name_to_id[random.choices(list(self.name_to_id.keys()))[0]] | |
return None | |
def parse_ids_from_data(items: List, parse_key: str) -> Tuple[Dict]: | |
"""Parse IDs from data samples retured by `load_tts_samples()`. | |
Args: | |
items (list): Data sampled returned by `load_tts_samples()`. | |
parse_key (str): The key to being used to parse the data. | |
Returns: | |
Tuple[Dict]: speaker IDs. | |
""" | |
classes = sorted({item[parse_key] for item in items}) | |
ids = {name: i for i, name in enumerate(classes)} | |
return ids | |
class EmbeddingManager(BaseIDManager): | |
"""Base `Embedding` Manager class. Every new `Embedding` manager must inherit this. | |
It defines common `Embedding` manager specific functions. | |
It expects embeddings files in the following format: | |
:: | |
{ | |
'audio_file_key':{ | |
'name': 'category_name', | |
'embedding'[<embedding_values>] | |
}, | |
... | |
} | |
`audio_file_key` is a unique key to the audio file in the dataset. It can be the path to the file or any other unique key. | |
`embedding` is the embedding vector of the audio file. | |
`name` can be name of the speaker of the audio file. | |
""" | |
def __init__( | |
self, | |
embedding_file_path: Union[str, List[str]] = "", | |
id_file_path: str = "", | |
encoder_model_path: str = "", | |
encoder_config_path: str = "", | |
use_cuda: bool = False, | |
): | |
super().__init__(id_file_path=id_file_path) | |
self.embeddings = {} | |
self.embeddings_by_names = {} | |
self.clip_ids = [] | |
self.encoder = None | |
self.encoder_ap = None | |
self.use_cuda = use_cuda | |
if embedding_file_path: | |
if isinstance(embedding_file_path, list): | |
self.load_embeddings_from_list_of_files(embedding_file_path) | |
else: | |
self.load_embeddings_from_file(embedding_file_path) | |
if encoder_model_path and encoder_config_path: | |
self.init_encoder(encoder_model_path, encoder_config_path, use_cuda) | |
def num_embeddings(self): | |
"""Get number of embeddings.""" | |
return len(self.embeddings) | |
def num_names(self): | |
"""Get number of embeddings.""" | |
return len(self.embeddings_by_names) | |
def embedding_dim(self): | |
"""Dimensionality of embeddings. If embeddings are not loaded, returns zero.""" | |
if self.embeddings: | |
return len(self.embeddings[list(self.embeddings.keys())[0]]["embedding"]) | |
return 0 | |
def embedding_names(self): | |
"""Get embedding names.""" | |
return list(self.embeddings_by_names.keys()) | |
def save_embeddings_to_file(self, file_path: str) -> None: | |
"""Save embeddings to a json file. | |
Args: | |
file_path (str): Path to the output file. | |
""" | |
save_file(self.embeddings, file_path) | |
def read_embeddings_from_file(file_path: str): | |
"""Load embeddings from a json file. | |
Args: | |
file_path (str): Path to the file. | |
""" | |
embeddings = load_file(file_path) | |
speakers = sorted({x["name"] for x in embeddings.values()}) | |
name_to_id = {name: i for i, name in enumerate(speakers)} | |
clip_ids = list(set(sorted(clip_name for clip_name in embeddings.keys()))) | |
# cache embeddings_by_names for fast inference using a bigger speakers.json | |
embeddings_by_names = {} | |
for x in embeddings.values(): | |
if x["name"] not in embeddings_by_names.keys(): | |
embeddings_by_names[x["name"]] = [x["embedding"]] | |
else: | |
embeddings_by_names[x["name"]].append(x["embedding"]) | |
return name_to_id, clip_ids, embeddings, embeddings_by_names | |
def load_embeddings_from_file(self, file_path: str) -> None: | |
"""Load embeddings from a json file. | |
Args: | |
file_path (str): Path to the target json file. | |
""" | |
self.name_to_id, self.clip_ids, self.embeddings, self.embeddings_by_names = self.read_embeddings_from_file( | |
file_path | |
) | |
def load_embeddings_from_list_of_files(self, file_paths: List[str]) -> None: | |
"""Load embeddings from a list of json files and don't allow duplicate keys. | |
Args: | |
file_paths (List[str]): List of paths to the target json files. | |
""" | |
self.name_to_id = {} | |
self.clip_ids = [] | |
self.embeddings_by_names = {} | |
self.embeddings = {} | |
for file_path in file_paths: | |
ids, clip_ids, embeddings, embeddings_by_names = self.read_embeddings_from_file(file_path) | |
# check colliding keys | |
duplicates = set(self.embeddings.keys()) & set(embeddings.keys()) | |
if duplicates: | |
raise ValueError(f" [!] Duplicate embedding names <{duplicates}> in {file_path}") | |
# store values | |
self.name_to_id.update(ids) | |
self.clip_ids.extend(clip_ids) | |
self.embeddings_by_names.update(embeddings_by_names) | |
self.embeddings.update(embeddings) | |
# reset name_to_id to get the right speaker ids | |
self.name_to_id = {name: i for i, name in enumerate(self.name_to_id)} | |
def get_embedding_by_clip(self, clip_idx: str) -> List: | |
"""Get embedding by clip ID. | |
Args: | |
clip_idx (str): Target clip ID. | |
Returns: | |
List: embedding as a list. | |
""" | |
return self.embeddings[clip_idx]["embedding"] | |
def get_embeddings_by_name(self, idx: str) -> List[List]: | |
"""Get all embeddings of a speaker. | |
Args: | |
idx (str): Target name. | |
Returns: | |
List[List]: all the embeddings of the given speaker. | |
""" | |
return self.embeddings_by_names[idx] | |
def get_embeddings_by_names(self) -> Dict: | |
"""Get all embeddings by names. | |
Returns: | |
Dict: all the embeddings of each speaker. | |
""" | |
embeddings_by_names = {} | |
for x in self.embeddings.values(): | |
if x["name"] not in embeddings_by_names.keys(): | |
embeddings_by_names[x["name"]] = [x["embedding"]] | |
else: | |
embeddings_by_names[x["name"]].append(x["embedding"]) | |
return embeddings_by_names | |
def get_mean_embedding(self, idx: str, num_samples: int = None, randomize: bool = False) -> np.ndarray: | |
"""Get mean embedding of a idx. | |
Args: | |
idx (str): Target name. | |
num_samples (int, optional): Number of samples to be averaged. Defaults to None. | |
randomize (bool, optional): Pick random `num_samples` of embeddings. Defaults to False. | |
Returns: | |
np.ndarray: Mean embedding. | |
""" | |
embeddings = self.get_embeddings_by_name(idx) | |
if num_samples is None: | |
embeddings = np.stack(embeddings).mean(0) | |
else: | |
assert len(embeddings) >= num_samples, f" [!] {idx} has number of samples < {num_samples}" | |
if randomize: | |
embeddings = np.stack(random.choices(embeddings, k=num_samples)).mean(0) | |
else: | |
embeddings = np.stack(embeddings[:num_samples]).mean(0) | |
return embeddings | |
def get_random_embedding(self) -> Any: | |
"""Get a random embedding. | |
Args: | |
Returns: | |
np.ndarray: embedding. | |
""" | |
if self.embeddings: | |
return self.embeddings[random.choices(list(self.embeddings.keys()))[0]]["embedding"] | |
return None | |
def get_clips(self) -> List: | |
return sorted(self.embeddings.keys()) | |
def init_encoder(self, model_path: str, config_path: str, use_cuda=False) -> None: | |
"""Initialize a speaker encoder model. | |
Args: | |
model_path (str): Model file path. | |
config_path (str): Model config file path. | |
use_cuda (bool, optional): Use CUDA. Defaults to False. | |
""" | |
self.use_cuda = use_cuda | |
self.encoder_config = load_config(config_path) | |
self.encoder = setup_encoder_model(self.encoder_config) | |
self.encoder_criterion = self.encoder.load_checkpoint( | |
self.encoder_config, model_path, eval=True, use_cuda=use_cuda, cache=True | |
) | |
self.encoder_ap = AudioProcessor(**self.encoder_config.audio) | |
def compute_embedding_from_clip(self, wav_file: Union[str, List[str]]) -> list: | |
"""Compute a embedding from a given audio file. | |
Args: | |
wav_file (Union[str, List[str]]): Target file path. | |
Returns: | |
list: Computed embedding. | |
""" | |
def _compute(wav_file: str): | |
waveform = self.encoder_ap.load_wav(wav_file, sr=self.encoder_ap.sample_rate) | |
if not self.encoder_config.model_params.get("use_torch_spec", False): | |
m_input = self.encoder_ap.melspectrogram(waveform) | |
m_input = torch.from_numpy(m_input) | |
else: | |
m_input = torch.from_numpy(waveform) | |
if self.use_cuda: | |
m_input = m_input.cuda() | |
m_input = m_input.unsqueeze(0) | |
embedding = self.encoder.compute_embedding(m_input) | |
return embedding | |
if isinstance(wav_file, list): | |
# compute the mean embedding | |
embeddings = None | |
for wf in wav_file: | |
embedding = _compute(wf) | |
if embeddings is None: | |
embeddings = embedding | |
else: | |
embeddings += embedding | |
return (embeddings / len(wav_file))[0].tolist() | |
embedding = _compute(wav_file) | |
return embedding[0].tolist() | |
def compute_embeddings(self, feats: Union[torch.Tensor, np.ndarray]) -> List: | |
"""Compute embedding from features. | |
Args: | |
feats (Union[torch.Tensor, np.ndarray]): Input features. | |
Returns: | |
List: computed embedding. | |
""" | |
if isinstance(feats, np.ndarray): | |
feats = torch.from_numpy(feats) | |
if feats.ndim == 2: | |
feats = feats.unsqueeze(0) | |
if self.use_cuda: | |
feats = feats.cuda() | |
return self.encoder.compute_embedding(feats) | |