import streamlit as st from transformers import pipeline # Load the BART model for text summarization from Hugging Face summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Streamlit app layout st.title("Text Summarization Tool") st.write("Automatically summarizes long articles or documents into concise summaries using the BART model.") # Input field for the user to enter or paste the text input_text = st.text_area("Enter the text you want to summarize:", height=300) # Check if there is input text if input_text: # Display the original text st.subheader("Original Text:") st.write(input_text) # Generate the summary using the pre-trained BART model summary = summarizer(input_text, max_length=200, min_length=50, do_sample=False) # Display the summarized text st.subheader("Summary:") st.write(summary[0]['summary_text']) # Option to clear the input if st.button("Clear Text"): st.text_area("Enter the text you want to summarize:", value="")