Ayush0804 commited on
Commit
15f516d
Β·
verified Β·
1 Parent(s): 458c430

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +179 -0
  2. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import AutoModelForCausalLM,AutoProcessor,pipeline
3
+ from PIL import Image
4
+ import os
5
+ import tempfile
6
+ import torch
7
+ from pathlib import Path
8
+ import secrets
9
+
10
+ # Initialise Hugging Face LLM
11
+ model_id="microsoft/Phi-3.5-vision-instruct"
12
+ model=AutoModelForCausalLM.from_pretrained(
13
+ model_id,
14
+ trust_remote_code=True,
15
+ torch_dtype=torch.float16,
16
+ use_flash_attention_2=False)
17
+
18
+ processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
19
+ math_messages=[]
20
+ # Function for processing the image
21
+ def process_image(image,should_convert=False):
22
+ '''
23
+ Saves the uploaded image or sketch and then extracts math-related descriptions using the model
24
+ '''
25
+ global math_messages
26
+ math_messages=[]
27
+ # create a temporary directory for saving images
28
+ uploaded_file_dir=os.environ.get("GRADIO_TEMP_DIR") or str(Path(tempfile.gettempdir())/"gradio")
29
+ os.makedirs(uploaded_file_dir,exist_ok=True)
30
+ # saves the uploaded image as a temporary file
31
+ name = f"tmp{secrets.token_hex(20)}.jpg"
32
+ filename = os.path.join(uploaded_file_dir, name)
33
+ # If the input was a sketch then convert into RGB format
34
+ if should_convert:
35
+ new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
36
+ new_img.paste(image, (0, 0), mask=image)
37
+ image = new_img
38
+ # Saves the image in the temporary file
39
+ image.save(filename)
40
+ # Calling the model to process images
41
+ messages = [{
42
+ 'role': 'system',
43
+ 'content': [{'text': 'You are a helpful assistant.'}]
44
+ }, {
45
+ 'role': 'user',
46
+ 'content': [
47
+ {'image': f'file://{filename}'},
48
+ {'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'}
49
+ ]
50
+ }]
51
+ prompt = processor.tokenizer.apply_chat_template(
52
+ messages, tokenize=False, add_generation_prompt=True
53
+ )
54
+ # Process the input
55
+ inputs = processor(prompt, image, return_tensors="pt")
56
+
57
+ # Generate the response
58
+ generation_args = {
59
+ "max_new_tokens": 1000,
60
+ "temperature": 0.2,
61
+ "do_sample": True,
62
+ }
63
+ generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
64
+
65
+ # Decode the response
66
+ generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
67
+ response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
68
+ return response
69
+
70
+ # Function to get math-response from the processed image
71
+ def get_math_response(image_description,user_question):
72
+ global math_messages
73
+ if not math_messages:
74
+ math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'})
75
+ math_messages = math_messages[:1]
76
+ if image_description is not None:
77
+ content = f'Image description: {image_description}\n\n'
78
+ else:
79
+ content = ''
80
+ query = f"{content}User question: {user_question}"
81
+ math_messages.append({'role': 'user', 'content': query})
82
+ pipe = pipeline("text-generation", model="deepseek-ai/DeepSeek-V2.5-1210", trust_remote_code=True)
83
+ response=pipe(math_messages)
84
+ print(response)
85
+ answer = None
86
+ for resp in response:
87
+ if resp.output is None:
88
+ continue
89
+ answer = resp.output.choices[0].message.content
90
+ yield answer.replace("\\", "\\\\")
91
+ print(f'query: {query}\nanswer: {answer}')
92
+ if answer is None:
93
+ math_messages.pop()
94
+ else:
95
+ math_messages.append({'role': 'assistant', 'content': answer})
96
+ # creating the chatbot
97
+ def math_chat_bot(image, sketchpad, question, state):
98
+ current_tab_index = state["tab_index"]
99
+ image_description = None
100
+ # Upload
101
+ if current_tab_index == 0:
102
+ if image is not None:
103
+ image_description = process_image(image)
104
+ # Sketch
105
+ elif current_tab_index == 1:
106
+ print(sketchpad)
107
+ if sketchpad and sketchpad["composite"]:
108
+ image_description = process_image(sketchpad["composite"], True)
109
+ yield from get_math_response(image_description, question)
110
+
111
+ css = """
112
+ #qwen-md .katex-display { display: inline; }
113
+ #qwen-md .katex-display>.katex { display: inline; }
114
+ #qwen-md .katex-display>.katex>.katex-html { display: inline; }
115
+ """
116
+
117
+ def tabs_select(e: gr.SelectData, _state):
118
+ _state["tab_index"] = e.index
119
+
120
+
121
+ # εˆ›ε»ΊGradioζŽ₯口
122
+ with gr.Blocks(css=css) as demo:
123
+ gr.HTML(
124
+ """\
125
+ <center><font size=3>This WebUI is based on Qwen2-VL for OCR and Qwen2.5-Math for mathematical reasoning. You can input either images or texts of mathematical or arithmetic problems.</center>"""
126
+ )
127
+ state = gr.State({"tab_index": 0})
128
+ with gr.Row():
129
+ with gr.Column():
130
+ with gr.Tabs() as input_tabs:
131
+ with gr.Tab("Upload"):
132
+ input_image = gr.Image(type="pil", label="Upload"),
133
+ with gr.Tab("Sketch"):
134
+ input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
135
+ input_tabs.select(fn=tabs_select, inputs=[state])
136
+ input_text = gr.Textbox(label="input your question")
137
+ with gr.Row():
138
+ with gr.Column():
139
+ clear_btn = gr.ClearButton(
140
+ [*input_image, input_sketchpad, input_text])
141
+ with gr.Column():
142
+ submit_btn = gr.Button("Submit", variant="primary")
143
+ with gr.Column():
144
+ output_md = gr.Markdown(label="answer",
145
+ latex_delimiters=[{
146
+ "left": "\\(",
147
+ "right": "\\)",
148
+ "display": True
149
+ }, {
150
+ "left": "\\begin\{equation\}",
151
+ "right": "\\end\{equation\}",
152
+ "display": True
153
+ }, {
154
+ "left": "\\begin\{align\}",
155
+ "right": "\\end\{align\}",
156
+ "display": True
157
+ }, {
158
+ "left": "\\begin\{alignat\}",
159
+ "right": "\\end\{alignat\}",
160
+ "display": True
161
+ }, {
162
+ "left": "\\begin\{gather\}",
163
+ "right": "\\end\{gather\}",
164
+ "display": True
165
+ }, {
166
+ "left": "\\begin\{CD\}",
167
+ "right": "\\end\{CD\}",
168
+ "display": True
169
+ }, {
170
+ "left": "\\[",
171
+ "right": "\\]",
172
+ "display": True
173
+ }],
174
+ elem_id="qwen-md")
175
+ submit_btn.click(
176
+ fn=math_chat_bot,
177
+ inputs=[*input_image, input_sketchpad, input_text, state],
178
+ outputs=output_md)
179
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ numpy==1.24.4
3
+ Pillow==10.3.0
4
+ Requests==2.31.0
5
+ torch
6
+ torchvision
7
+ transformers==4.43.0
8
+ accelerate==0.30.0