Spaces:
Runtime error
Runtime error
File size: 9,479 Bytes
461400f 7793ce6 461400f ca57650 461400f af5763a 461400f af5763a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
import cv2
import time
import numpy as np
import onnx
import onnxruntime
import os
os.system('pip install --upgrade --force-reinstall onnxruntime')
# Ref: https://github.com/liruoteng/OpticalFlowToolkit/blob/5cf87b947a0032f58c922bbc22c0afb30b90c418/lib/flowlib.py#L249
import numpy as np
UNKNOWN_FLOW_THRESH = 1e7
def make_color_wheel():
"""
Generate color wheel according Middlebury color code
:return: Color wheel
"""
RY = 15
YG = 6
GC = 4
CB = 11
BM = 13
MR = 6
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
colorwheel[col:col+YG, 1] = 255
col += YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
colorwheel[col:col+CB, 2] = 255
col += CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col+MR, 0] = 255
return colorwheel
colorwheel = make_color_wheel()
def compute_color(u, v):
"""
compute optical flow color map
:param u: optical flow horizontal map
:param v: optical flow vertical map
:return: optical flow in color code
"""
[h, w] = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u**2+v**2)
a = np.arctan2(-v, -u) / np.pi
fk = (a+1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols+1] = 1
f = fk - k0
for i in range(0, np.size(colorwheel,1)):
tmp = colorwheel[:, i]
col0 = tmp[k0-1] / 255
col1 = tmp[k1-1] / 255
col = (1-f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1-rad[idx]*(1-col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))
return img
def flow_to_image(flow):
"""
Convert flow into middlebury color code image
:param flow: optical flow map
:return: optical flow image in middlebury color
"""
u = flow[:, :, 0]
v = flow[:, :, 1]
maxu = -999.
maxv = -999.
minu = 999.
minv = 999.
idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH)
u[idxUnknow] = 0
v[idxUnknow] = 0
maxu = max(maxu, np.max(u))
minu = min(minu, np.min(u))
maxv = max(maxv, np.max(v))
minv = min(minv, np.min(v))
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(-1, np.max(rad))
u = u/(maxrad + np.finfo(float).eps)
v = v/(maxrad + np.finfo(float).eps)
img = compute_color(u, v)
idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2)
img[idx] = 0
return np.uint8(img)
class Raft():
def __init__(self, model_path):
# Initialize model
self.initialize_model(model_path)
def __call__(self, img1, img2):
return self.estimate_flow(img1, img2)
def initialize_model(self, model_path):
self.session = onnxruntime.InferenceSession(model_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
# Get model info
self.get_input_details()
self.get_output_details()
def estimate_flow(self, img1, img2):
input_tensor1 = self.prepare_input(img1)
input_tensor2 = self.prepare_input(img2)
outputs = self.inference(input_tensor1, input_tensor2)
self.flow_map = self.process_output(outputs)
return self.flow_map
def prepare_input(self, img):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
self.img_height, self.img_width = img.shape[:2]
img_input = cv2.resize(img, (self.input_width,self.input_height))
# img_input = img_input/255
img_input = img_input.transpose(2, 0, 1)
img_input = img_input[np.newaxis,:,:,:]
return img_input.astype(np.float32)
def inference(self, input_tensor1, input_tensor2):
# start = time.time()
outputs = self.session.run(self.output_names, {self.input_names[0]: input_tensor1,
self.input_names[1]: input_tensor2})
# print(time.time() - start)
return outputs
def process_output(self, output):
flow_map = output[1][0].transpose(1, 2, 0)
return flow_map
def draw_flow(self):
# Convert flow to image
flow_img = flow_to_image(self.flow_map)
# Convert to BGR
flow_img = cv2.cvtColor(flow_img, cv2.COLOR_RGB2BGR)
# Resize the depth map to match the input image shape
return cv2.resize(flow_img, (self.img_width,self.img_height))
def get_input_details(self):
model_inputs = self.session.get_inputs()
self.input_names = [model_inputs[i].name for i in range(len(model_inputs))]
self.input_shape = model_inputs[0].shape
self.input_height = self.input_shape[2]
self.input_width = self.input_shape[3]
def get_output_details(self):
model_outputs = self.session.get_outputs()
self.output_names = [model_outputs[i].name for i in range(len(model_outputs))]
self.output_shape = model_outputs[0].shape
self.output_height = self.output_shape[2]
self.output_width = self.output_shape[3]
if __name__ == '__main__':
from imread_from_url import imread_from_url
# Initialize model
model_path='raft_small_iter10_240x320.onnx'
flow_estimator = Raft(model_path)
# Read inference image
img1 = imread_from_url("https://github.com/princeton-vl/RAFT/blob/master/demo-frames/frame_0016.png?raw=true")
img2 = imread_from_url("https://github.com/princeton-vl/RAFT/blob/master/demo-frames/frame_0025.png?raw=true")
# Estimate flow and colorize it
flow_map = flow_estimator(img1, img2)
flow_img = flow_estimator.draw_flow()
combined_img = np.hstack((img1, img2, flow_img))
#cv2.namedWindow("Estimated flow", cv2.WINDOW_NORMAL)
#cv2.imshow("Estimated flow", combined_img)
#cv2.waitKey(0)
import os
import cv2
import gradio as gr
import yt_dlp
def download_youtube_video(youtube_url, output_filename):
ydl_opts = {
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
'outtmpl': output_filename,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([youtube_url])
def process_video(youtube_url, start_time, flow_frame_offset):
model_path = 'models/raft_small_iter10_240x320.onnx'
flow_estimator = Raft(model_path)
output_filename = 'downloaded_video.mp4'
processed_output = 'processed_video.mp4'
# Download video
if os.path.exists(output_filename):
os.remove(output_filename)
download_youtube_video(youtube_url, output_filename)
cap = cv2.VideoCapture(output_filename)
if not cap.isOpened():
return "Error: Could not open video."
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
fourcc = cv2.VideoWriter_fourcc(*'XVID')
out = cv2.VideoWriter(processed_output, fourcc, fps, (frame_width, frame_height))
cap.set(cv2.CAP_PROP_POS_FRAMES, start_time * fps)
frame_list = []
frame_num = 0
while cap.isOpened():
ret, prev_frame = cap.read()
if not ret:
break
frame_list.append(prev_frame)
frame_num += 1
if frame_num <= flow_frame_offset:
continue
flow_map = flow_estimator(frame_list[0], frame_list[-1])
flow_img = flow_estimator.draw_flow()
alpha = 0.5
combined_img = cv2.addWeighted(frame_list[0], alpha, flow_img, (1 - alpha), 0)
if combined_img is None:
break
out.write(combined_img)
frame_list.pop(0)
cap.release()
out.release()
return processed_output
examples = [
["https://www.youtube.com/watch?v=is38pqgbj6A", 5, 50, "output_1.mp4"],
["https://www.youtube.com/watch?v=AdbrfoxiAtk", 0, 60, "output_2.mp4"],
["https://www.youtube.com/watch?v=vWGg0iPmI8k", 13, 70, "output_3.mp4"],
]
with gr.Blocks() as app:
gr.Markdown("### Optical Flow Video Processing\n"
"Enter a YouTube URL, set the start time and flow frame offset, "
"then click 'Process Video' to see the optical flow processing.")
with gr.Row():
with gr.Column():
youtube_url = gr.Textbox(label="YouTube URL", placeholder="Enter YouTube Video URL Here")
start_time = gr.Slider(minimum=0, maximum=60, label="Start Time (seconds)", step=1)
flow_frame_offset = gr.Slider(minimum=1, maximum=100, label="Flow Frame Offset", step=1)
submit_button = gr.Button("Process Video")
with gr.Column():
output_video = gr.Video(label="Processed Video")
submit_button.click(
fn=process_video,
inputs=[youtube_url, start_time, flow_frame_offset],
outputs=output_video
)
gr.Examples(examples=examples,
inputs=[youtube_url, start_time, flow_frame_offset],
fn=process_video,
outputs=output_video,
cache_examples=False)
app.launch()
|