Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,48 +5,30 @@ import spaces
|
|
5 |
import torch
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
MODEL_NAME = "Azure99/blossom-v5.1-9b"
|
11 |
|
12 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto")
|
13 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
14 |
|
15 |
|
16 |
def get_input_ids(inst, history):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
patterns.append(f'{conv[1]}')
|
23 |
-
patterns.append(f'\n|Human|: {inst}\n|Bot|: ')
|
24 |
-
patterns[0] = prefix + patterns[0]
|
25 |
-
|
26 |
-
input_ids = []
|
27 |
-
for i, pattern in enumerate(patterns):
|
28 |
-
input_ids += tokenizer.encode(pattern, add_special_tokens=(i == 0))
|
29 |
-
if i % 2 == 1:
|
30 |
-
input_ids += [tokenizer.eos_token_id]
|
31 |
-
return input_ids
|
32 |
-
|
33 |
-
|
34 |
-
def generate(generation_kwargs):
|
35 |
-
with torch.no_grad():
|
36 |
-
Thread(target=model.generate, kwargs=generation_kwargs).start()
|
37 |
|
38 |
|
39 |
@spaces.GPU
|
40 |
def chat(inst, history, temperature, top_p, repetition_penalty):
|
41 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
42 |
input_ids = get_input_ids(inst, history)
|
43 |
-
|
44 |
-
yield "The input is too long, please clear the history."
|
45 |
-
return
|
46 |
-
generation_kwargs = dict(input_ids=torch.tensor([input_ids]).to(model.device),
|
47 |
streamer=streamer, do_sample=True, max_new_tokens=MAX_NEW_TOKENS,
|
48 |
temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)
|
49 |
-
|
|
|
50 |
|
51 |
outputs = ""
|
52 |
for new_text in streamer:
|
@@ -87,7 +69,7 @@ additional_inputs = [
|
|
87 |
gr.ChatInterface(chat,
|
88 |
chatbot=gr.Chatbot(show_label=False, height=500, show_copy_button=True, render_markdown=True),
|
89 |
textbox=gr.Textbox(placeholder="", container=False, scale=7),
|
90 |
-
title="Blossom
|
91 |
description='Hello, I am Blossom, an open source conversational large language model.🌠'
|
92 |
'<a href="https://github.com/Azure99/BlossomLM">GitHub</a>',
|
93 |
theme="soft",
|
|
|
5 |
import torch
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
7 |
|
8 |
+
MAX_NEW_TOKENS = 2048
|
9 |
+
MODEL_NAME = "Azure99/Blossom-V6-14B"
|
|
|
10 |
|
11 |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.bfloat16, device_map="auto")
|
12 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
13 |
|
14 |
|
15 |
def get_input_ids(inst, history):
|
16 |
+
conversation = []
|
17 |
+
for user, assistant in history:
|
18 |
+
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
|
19 |
+
conversation.append({"role": "user", "content": inst})
|
20 |
+
return tokenizer.apply_chat_template(conversation, return_tensors="pt").to(model.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
@spaces.GPU
|
24 |
def chat(inst, history, temperature, top_p, repetition_penalty):
|
25 |
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
26 |
input_ids = get_input_ids(inst, history)
|
27 |
+
generation_kwargs = dict(input_ids=input_ids,
|
|
|
|
|
|
|
28 |
streamer=streamer, do_sample=True, max_new_tokens=MAX_NEW_TOKENS,
|
29 |
temperature=temperature, top_p=top_p, repetition_penalty=repetition_penalty)
|
30 |
+
|
31 |
+
Thread(target=model.generate, kwargs=generation_kwargs).start()
|
32 |
|
33 |
outputs = ""
|
34 |
for new_text in streamer:
|
|
|
69 |
gr.ChatInterface(chat,
|
70 |
chatbot=gr.Chatbot(show_label=False, height=500, show_copy_button=True, render_markdown=True),
|
71 |
textbox=gr.Textbox(placeholder="", container=False, scale=7),
|
72 |
+
title="Blossom 14B Demo",
|
73 |
description='Hello, I am Blossom, an open source conversational large language model.🌠'
|
74 |
'<a href="https://github.com/Azure99/BlossomLM">GitHub</a>',
|
75 |
theme="soft",
|