SegVol / model /inference_cpu.py
yuxindu's picture
init the space
9850295
raw
history blame
7.2 kB
import argparse
import os
import torch
import torch.nn.functional as F
import json
import monai.transforms as transforms
from model.segment_anything_volumetric import sam_model_registry
from model.network.model import SegVol
from model.data_process.demo_data_process import process_ct_gt
from model.utils.monai_inferers_utils import sliding_window_inference, generate_box, select_points, build_binary_cube, build_binary_points, logits2roi_coor
from model.utils.visualize import draw_result
import streamlit as st
def set_parse():
# %% set up parser
parser = argparse.ArgumentParser()
parser.add_argument("--test_mode", default=True, type=bool)
parser.add_argument("--resume", type = str, default = 'SegVol_v1.pth')
parser.add_argument("-infer_overlap", default=0.0, type=float, help="sliding window inference overlap")
parser.add_argument("-spatial_size", default=(32, 256, 256), type=tuple)
parser.add_argument("-patch_size", default=(4, 16, 16), type=tuple)
parser.add_argument('-work_dir', type=str, default='./work_dir')
### demo
parser.add_argument("--clip_ckpt", type = str, default = 'model/config/clip')
args = parser.parse_args()
return args
def zoom_in_zoom_out(args, segvol_model, image, image_resize, text_prompt, point_prompt, box_prompt):
image_single_resize = image_resize
image_single = image[0,0]
ori_shape = image_single.shape
resize_shape = image_single_resize.shape[2:]
# generate prompts
text_single = None if text_prompt is None else [text_prompt]
points_single = None
box_single = None
if args.use_point_prompt:
point, point_label = point_prompt
points_single = (point.unsqueeze(0).float(), point_label.unsqueeze(0).float())
binary_points_resize = build_binary_points(point, point_label, resize_shape)
if args.use_box_prompt:
box_single = box_prompt.unsqueeze(0).float()
binary_cube_resize = build_binary_cube(box_single, binary_cube_shape=resize_shape)
####################
# zoom-out inference:
print('--- zoom out inference ---')
print(text_single)
print(f'use text-prompt [{text_single!=None}], use box-prompt [{box_single!=None}], use point-prompt [{points_single!=None}]')
with torch.no_grad():
logits_global_single = segvol_model(image_single_resize,
text=text_single,
boxes=box_single,
points=points_single)
# resize back global logits
logits_global_single = F.interpolate(
logits_global_single.cpu(),
size=ori_shape, mode='nearest')[0][0]
# build prompt reflection for zoom-in
if args.use_point_prompt:
binary_points = F.interpolate(
binary_points_resize.unsqueeze(0).unsqueeze(0).float(),
size=ori_shape, mode='nearest')[0][0]
if args.use_box_prompt:
binary_cube = F.interpolate(
binary_cube_resize.unsqueeze(0).unsqueeze(0).float(),
size=ori_shape, mode='nearest')[0][0]
# draw_result('unknow', image_single_resize, None, point_prompt, logits_global_single, logits_global_single)
if not args.use_zoom_in:
return logits_global_single
####################
# zoom-in inference:
min_d, min_h, min_w, max_d, max_h, max_w = logits2roi_coor(args.spatial_size, logits_global_single)
if min_d is None:
print('Fail to detect foreground!')
return logits_global_single
# Crop roi
image_single_cropped = image_single[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1].unsqueeze(0).unsqueeze(0)
global_preds = (torch.sigmoid(logits_global_single[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1])>0.5).long()
assert not (args.use_box_prompt and args.use_point_prompt)
# label_single_cropped = label_single[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1].unsqueeze(0).unsqueeze(0)
prompt_reflection = None
if args.use_box_prompt:
binary_cube_cropped = binary_cube[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
prompt_reflection = (
binary_cube_cropped.unsqueeze(0).unsqueeze(0),
global_preds.unsqueeze(0).unsqueeze(0)
)
if args.use_point_prompt:
binary_points_cropped = binary_points[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
prompt_reflection = (
binary_points_cropped.unsqueeze(0).unsqueeze(0),
global_preds.unsqueeze(0).unsqueeze(0)
)
## inference
with torch.no_grad():
logits_single_cropped = sliding_window_inference(
image_single_cropped, prompt_reflection,
args.spatial_size, 1, segvol_model, args.infer_overlap,
text=text_single,
use_box=args.use_box_prompt,
use_point=args.use_point_prompt,
logits_global_single=logits_global_single,
)
logits_single_cropped = logits_single_cropped.cpu().squeeze()
if logits_single_cropped.shape != logits_global_single.shape:
logits_global_single[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1] = logits_single_cropped
return logits_global_single
@st.cache_resource
def build_model():
# build model
st.write('building model')
clip_ckpt = 'model/config/clip'
resume = 'SegVol_v1.pth'
sam_model = sam_model_registry['vit']()
segvol_model = SegVol(
image_encoder=sam_model.image_encoder,
mask_decoder=sam_model.mask_decoder,
prompt_encoder=sam_model.prompt_encoder,
clip_ckpt=clip_ckpt,
roi_size=(32,256,256),
patch_size=(4,16,16),
test_mode=True,
)
segvol_model = torch.nn.DataParallel(segvol_model)
segvol_model.eval()
# load param
if os.path.isfile(resume):
## Map model to be loaded to specified single GPU
loc = 'cpu'
checkpoint = torch.load(resume, map_location=loc)
segvol_model.load_state_dict(checkpoint['model'], strict=True)
print("loaded checkpoint '{}' (epoch {})".format(resume, checkpoint['epoch']))
print('model build done!')
return segvol_model
@st.cache_data
def inference_case(_image, _image_zoom_out, _point_prompt, text_prompt, _box_prompt):
# seg config
args = set_parse()
args.use_zoom_in = True
args.use_text_prompt = text_prompt is not None
args.use_box_prompt = _box_prompt is not None
args.use_point_prompt = _point_prompt is not None
segvol_model = build_model()
# run inference
logits = zoom_in_zoom_out(
args, segvol_model,
_image.unsqueeze(0), _image_zoom_out.unsqueeze(0),
text_prompt, _point_prompt, _box_prompt)
print(logits.shape)
resize_transform = transforms.Compose([
transforms.AddChannel(),
transforms.Resize((325,325,325), mode='trilinear')
]
)
logits = resize_transform(logits)[0]
print(logits.shape)
return (torch.sigmoid(logits) > 0.5).int().numpy()