Spaces:
Runtime error
Runtime error
import argparse | |
import datetime | |
import logging | |
import inspect | |
import math | |
import os | |
import warnings | |
from typing import Dict, Optional, Tuple | |
from omegaconf import OmegaConf | |
import torch | |
import torch.nn.functional as F | |
import torch.utils.checkpoint | |
import diffusers | |
import transformers | |
from accelerate import Accelerator | |
from accelerate.logging import get_logger | |
from accelerate.utils import set_seed | |
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler | |
from diffusers.optimization import get_scheduler | |
from diffusers.utils import check_min_version | |
from diffusers.utils.import_utils import is_xformers_available | |
from tqdm.auto import tqdm | |
from transformers import CLIPTextModel, CLIPTokenizer | |
from vid2vid_zero.models.unet_2d_condition import UNet2DConditionModel | |
from vid2vid_zero.data.dataset import VideoDataset | |
from vid2vid_zero.pipelines.pipeline_vid2vid_zero import Vid2VidZeroPipeline | |
from vid2vid_zero.util import save_videos_grid, save_videos_as_images, ddim_inversion | |
from einops import rearrange | |
from vid2vid_zero.p2p.p2p_stable import AttentionReplace, AttentionRefine | |
from vid2vid_zero.p2p.ptp_utils import register_attention_control | |
from vid2vid_zero.p2p.null_text_w_ptp import NullInversion | |
# Will error if the minimal version of diffusers is not installed. Remove at your own risks. | |
check_min_version("0.10.0.dev0") | |
logger = get_logger(__name__, log_level="INFO") | |
def prepare_control(unet, prompts, validation_data): | |
assert len(prompts) == 2 | |
print(prompts[0]) | |
print(prompts[1]) | |
length1 = len(prompts[0].split(' ')) | |
length2 = len(prompts[1].split(' ')) | |
if length1 == length2: | |
# prepare for attn guidance | |
cross_replace_steps = 0.8 | |
self_replace_steps = 0.4 | |
controller = AttentionReplace(prompts, validation_data['num_inference_steps'], | |
cross_replace_steps=cross_replace_steps, | |
self_replace_steps=self_replace_steps) | |
else: | |
cross_replace_steps = 0.8 | |
self_replace_steps = 0.4 | |
controller = AttentionRefine(prompts, validation_data['num_inference_steps'], | |
cross_replace_steps=self_replace_steps, | |
self_replace_steps=self_replace_steps) | |
print(controller) | |
register_attention_control(unet, controller) | |
# the update of unet forward function is inplace | |
return cross_replace_steps, self_replace_steps | |
def main( | |
pretrained_model_path: str, | |
output_dir: str, | |
input_data: Dict, | |
validation_data: Dict, | |
input_batch_size: int = 1, | |
gradient_accumulation_steps: int = 1, | |
gradient_checkpointing: bool = True, | |
mixed_precision: Optional[str] = "fp16", | |
enable_xformers_memory_efficient_attention: bool = True, | |
seed: Optional[int] = None, | |
use_sc_attn: bool = True, | |
use_st_attn: bool = True, | |
st_attn_idx: int = 0, | |
fps: int = 2, | |
): | |
*_, config = inspect.getargvalues(inspect.currentframe()) | |
accelerator = Accelerator( | |
gradient_accumulation_steps=gradient_accumulation_steps, | |
mixed_precision=mixed_precision, | |
) | |
# Make one log on every process with the configuration for debugging. | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO, | |
) | |
logger.info(accelerator.state, main_process_only=False) | |
if accelerator.is_local_main_process: | |
transformers.utils.logging.set_verbosity_warning() | |
diffusers.utils.logging.set_verbosity_info() | |
else: | |
transformers.utils.logging.set_verbosity_error() | |
diffusers.utils.logging.set_verbosity_error() | |
# If passed along, set the training seed now. | |
if seed is not None: | |
set_seed(seed) | |
# Handle the output folder creation | |
if accelerator.is_main_process: | |
os.makedirs(output_dir, exist_ok=True) | |
os.makedirs(f"{output_dir}/sample", exist_ok=True) | |
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml')) | |
# Load tokenizer and models. | |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder") | |
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae") | |
unet = UNet2DConditionModel.from_pretrained( | |
pretrained_model_path, subfolder="unet", use_sc_attn=use_sc_attn, | |
use_st_attn=use_st_attn, st_attn_idx=st_attn_idx) | |
# Freeze vae, text_encoder, and unet | |
vae.requires_grad_(False) | |
text_encoder.requires_grad_(False) | |
unet.requires_grad_(False) | |
if enable_xformers_memory_efficient_attention: | |
if is_xformers_available(): | |
unet.enable_xformers_memory_efficient_attention() | |
else: | |
raise ValueError("xformers is not available. Make sure it is installed correctly") | |
if gradient_checkpointing: | |
unet.enable_gradient_checkpointing() | |
# Get the training dataset | |
input_dataset = VideoDataset(**input_data) | |
# Preprocessing the dataset | |
input_dataset.prompt_ids = tokenizer( | |
input_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" | |
).input_ids[0] | |
# DataLoaders creation: | |
input_dataloader = torch.utils.data.DataLoader( | |
input_dataset, batch_size=input_batch_size | |
) | |
# Get the validation pipeline | |
validation_pipeline = Vid2VidZeroPipeline( | |
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, | |
scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler"), | |
safety_checker=None, feature_extractor=None, | |
) | |
validation_pipeline.enable_vae_slicing() | |
ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler') | |
ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps) | |
# Prepare everything with our `accelerator`. | |
unet, input_dataloader = accelerator.prepare( | |
unet, input_dataloader, | |
) | |
# For mixed precision training we cast the text_encoder and vae weights to half-precision | |
# as these models are only used for inference, keeping weights in full precision is not required. | |
weight_dtype = torch.float32 | |
if accelerator.mixed_precision == "fp16": | |
weight_dtype = torch.float16 | |
elif accelerator.mixed_precision == "bf16": | |
weight_dtype = torch.bfloat16 | |
# Move text_encode and vae to gpu and cast to weight_dtype | |
text_encoder.to(accelerator.device, dtype=weight_dtype) | |
vae.to(accelerator.device, dtype=weight_dtype) | |
# We need to recalculate our total training steps as the size of the training dataloader may have changed. | |
num_update_steps_per_epoch = math.ceil(len(input_dataloader) / gradient_accumulation_steps) | |
# We need to initialize the trackers we use, and also store our configuration. | |
# The trackers initializes automatically on the main process. | |
if accelerator.is_main_process: | |
accelerator.init_trackers("vid2vid-zero") | |
# Zero-shot Eval! | |
total_batch_size = input_batch_size * accelerator.num_processes * gradient_accumulation_steps | |
logger.info("***** Running training *****") | |
logger.info(f" Num examples = {len(input_dataset)}") | |
logger.info(f" Instantaneous batch size per device = {input_batch_size}") | |
logger.info(f" Total input batch size (w. parallel, distributed & accumulation) = {total_batch_size}") | |
global_step = 0 | |
unet.eval() | |
for step, batch in enumerate(input_dataloader): | |
samples = [] | |
pixel_values = batch["pixel_values"].to(weight_dtype) | |
# save input video | |
video = (pixel_values / 2 + 0.5).clamp(0, 1).detach().cpu() | |
video = video.permute(0, 2, 1, 3, 4) # (b, f, c, h, w) | |
samples.append(video) | |
# start processing | |
video_length = pixel_values.shape[1] | |
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w") | |
latents = vae.encode(pixel_values).latent_dist.sample() | |
# take video as input | |
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length) | |
latents = latents * 0.18215 | |
generator = torch.Generator(device="cuda") | |
generator.manual_seed(seed) | |
# perform inversion | |
ddim_inv_latent = None | |
if validation_data.use_null_inv: | |
null_inversion = NullInversion( | |
model=validation_pipeline, guidance_scale=validation_data.guidance_scale, null_inv_with_prompt=False, | |
null_normal_infer=validation_data.null_normal_infer, | |
) | |
with torch.cuda.amp.autocast(enabled=True, dtype=torch.float32): | |
ddim_inv_latent, uncond_embeddings = null_inversion.invert( | |
latents, input_dataset.prompt, verbose=True, | |
null_inner_steps=validation_data.null_inner_steps, | |
null_base_lr=validation_data.null_base_lr, | |
) | |
ddim_inv_latent = ddim_inv_latent.to(weight_dtype) | |
uncond_embeddings = [embed.to(weight_dtype) for embed in uncond_embeddings] | |
else: | |
ddim_inv_latent = ddim_inversion( | |
validation_pipeline, ddim_inv_scheduler, video_latent=latents, | |
num_inv_steps=validation_data.num_inv_steps, prompt="", | |
normal_infer=True, # we don't want to use scatn or denseattn for inversion, just use sd inferenece | |
)[-1].to(weight_dtype) | |
uncond_embeddings = None | |
ddim_inv_latent = ddim_inv_latent.repeat(2, 1, 1, 1, 1) | |
for idx, prompt in enumerate(validation_data.prompts): | |
prompts = [input_dataset.prompt, prompt] # a list of two prompts | |
cross_replace_steps, self_replace_steps = prepare_control(unet=unet, prompts=prompts, validation_data=validation_data) | |
sample = validation_pipeline(prompts, generator=generator, latents=ddim_inv_latent, | |
uncond_embeddings=uncond_embeddings, | |
**validation_data).images | |
assert sample.shape[0] == 2 | |
sample_inv, sample_gen = sample.chunk(2) | |
# add input for vis | |
save_videos_grid(sample_gen, f"{output_dir}/sample/{prompts[1]}.gif", fps=fps) | |
samples.append(sample_gen) | |
samples = torch.concat(samples) | |
save_path = f"{output_dir}/sample-all.gif" | |
save_videos_grid(samples, save_path, fps=fps) | |
logger.info(f"Saved samples to {save_path}") | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, default="./configs/vid2vid_zero.yaml") | |
args = parser.parse_args() | |
main(**OmegaConf.load(args.config)) | |